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The myogenic kinome: protein kinases critical to
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Abstract

Myogenesis is a complex and tightly regulated process, the end result of which is the formation of a
multinucleated myofibre with contractile capability. Typically, this process is described as being regulated by a
coordinated transcriptional hierarchy. However, like any cellular process, myogenesis is also controlled by members
of the protein kinase family, which transmit and execute signals initiated by promyogenic stimuli. In this review, we
describe the various kinases involved in mammalian skeletal myogenesis: which step of myogenesis a particular
kinase regulates, how it is activated (if known) and what its downstream effects are. We present a scheme of
protein kinase activity, similar to that which exists for the myogenic transcription factors, to better clarify the
complex signalling that underlies muscle development.
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Review
Embryonic myogenesis is a multistep process that begins
with the commitment of an embryonic precursor to the
myogenic lineage, followed by the proliferation of these
committed myoblasts, the differentiation of myoblasts
into postmitotic myocytes, and finally fusion of myo-
cytes to form a multinucleated myotube. As the myo-
tube matures, the syncytial cell becomes specialized for
its particular function, with the bulk of the cytoplasm
occupied by the contractile apparatus, and where the
myotube/myofibre can further grow or hypertrophy in
response to appropriate stimuli. Postnatal myogenesis is
a similar process, except that fusion occurs primarily
between myoblasts and preexisting myotubes, and where
the role of the embryonic precursor is played by the
quiescent satellite cell.
The process of myogenesis is controlled by several

myogenic transcription factors that act as terminal effec-
tors of signalling cascades and produce appropriate
developmental stage-specific transcripts. The concerted
roles that these transcription factors play is well known
and well reviewed (see, for example, Sabourin and

Rudnicki [1] and Le Grand and Rudnicki [2]). Paired-
box protein 7 (Pax7) maintains a population of quies-
cent satellite cells and, together with myogenic factor 5
(Myf5), plays a role in the expansion of activated myo-
blasts. Myoblast determination protein (MyoD) is
believed to determine the differentiation potential of an
activated myoblast, and acts together with myogenin
and myocyte enhancer factor 2 (MEF2) to drive differen-
tiation. Finally, muscle-specific regulatory factor 4
(MRF4) is required for hypertrophy, although it may
have other roles as well. Obviously, these transcription
factors do not act alone, but exist as part of complex
signalling cascades that control every stage of myogen-
esis. One of the major components of these cascades is
the protein kinase, an enzyme that directs cell behaviour
through the simple but reversible process of phosphory-
lation. Over 500 kinases exist in humans and mice [3,4];
however, a myogenic scheme of protein kinase activity,
similar to that which exists for the above-named tran-
scription factors, has not previously been elaborated.
In this review, we summarize the involvement of the

different protein kinases that participate in myogenesis.
We discuss the stages they are required for, how they
are activated during development/regeneration, and
what the consequences of their activation are in terms
of immediate phosphorylations and the downstream

* Correspondence: rkothary@ohri.ca
1Regenerative Medicine Program, Ottawa Hospital Research Institute, 501
Smyth Road, Ottawa, ON, K1H 8L6, Canada
Full list of author information is available at the end of the article

Knight and Kothary Skeletal Muscle 2011, 1:29
http://www.skeletalmusclejournal.com/content/1/1/29 Skeletal Muscle

© 2011 Knight and Kothary; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:rkothary@ohri.ca
http://creativecommons.org/licenses/by/2.0


processes regulated. We discuss only developmental and
regenerative skeletal myogenesis, in particular that of
mammals, as cardiomyogenesis and the myogenesis of
other vertebrate and invertebrate species contain unique
features that require separate discussion. As dozens of
kinases have been implicated in controlling some stage
of myogenesis, this review covers the major players,

those for which there is substantial evidence document-
ing their involvement (Figure 1).

Protein kinase A
Protein kinase A (PKA), or cAMP-dependent protein
kinase, was discovered over 40 years ago, the second
protein kinase to be described [5]. It is involved in a

Figure 1 Transcription factors and kinases regulating the different stages of myogenesis. A graphical representation of myogenesis is
shown. Embryonic precursors or quiescent satellite cells become activated to form proliferating myoblasts, which differentiate into myocytes
that fuse to form a multinucleated myotube. The upper portion of the figure shows the myogenic transcription factors required for this process
and the stages for which they are required. The lower portion shows the myogenic protein kinases and the stages that they regulate.
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multitude of cellular processes and has hundreds of sub-
strates [6]. In its inactive form, it exists as a holoenzyme
containing two catalytic and two regulatory subunits.
Each regulatory subunit can bind cAMP, and binding
triggers dissociation of the holoenzyme and the release/
activation of the catalytic subunits. Elevation in intracel-
lular cAMP levels is therefore the primary mechanism
of activation for PKA.

PKA is required at multiple stages during myogenesis,
but an initial requirement is found during embryogen-
esis and the formation of myogenic precursors (i.e. myo-
blasts) within the dermomyotome (Figure 2). PKA
activity is required for the expression of Pax3, MyoD
and Myf5 in cells of the dermomyotome that will transi-
tion to form the myotome proper [7]. This activity is
initiated by the release of Wnt1 and Wnt7a from the

Figure 2 Regulation of the early myogenic transcriptional program by the kinome. The figure shows the mechanisms by which the
kinases described in the text coordinate embryonic precursor activation, myoblast proliferation and the prevention of premature myoblast
differentiation. Wnt1 and Wnt7a stimulation of precursor cells activates protein kinase A (PKA), which, through the phosphorylation of CREB,
induces the expression of the myogenic transcription factors Myf5, MyoD and Pax3, resulting in the myogenic commitment of embryonic
precursors. PKA then prevents the premature differentiation of proliferating myoblasts by phosphorylating and inhibiting the transcriptional
activity of MEF2D. The cyclin-dependent kinases (CDKs) regulate cell cycle transitions and are activated at the appropriate time by the availability
of their respective cyclins, depicted in the boxed inset. Cell cycle progression is achieved by the CDKs through the phosphorylation of Rb, which,
when phosphorylated, is unable to bind and inhibit the E2F family of transcription factors that promote the expression of genes involved in cell
division. Phosphorylation of Rb by the CDKs also prevents it from associating with and transactivating MyoD, thereby inhibiting cell cycle exit
and differentiation. Cell cycle exit is further prevented by the proteolytic degradation of MyoD that results from direct CDK phosphorylation. The
extracellular signal-regulated kinase (ERK) is activated by growth factors such as fibroblast growth factor and insulin-like growth factor (IGF),
although the substrates ERK acts on to promote proliferation and inhibit differentiation are unknown. IGF also activates the Akt1 pathway and
stimulates proliferation when myoblasts are subconfluent. Phosphorylation of FoxO1 by Akt1 prevents this transcription factor from accumulating
in the nucleus, inhibiting the expression of genes involved in cell cycle exit, such as p27.
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dorsal neural tube and surface ectoderm, respectively,
which activate heteromeric G proteins and adenylate
cyclase to produce cAMP, activating PKA. As PKA has
many substrates, the expression of these myogenic genes
is likely accomplished through several different targets,
but at least one of these is the transcription factor
cAMP response-element binding protein (CREB). Phos-
phorylation of CREB by PKA allows it to initiate the
transcription of genes that contain a CRE element, two
of which are Pax3 and Myf5. Chen et al. [7] showed
that phosphorylated CREB is present at high levels in
cells of the dermomyotome that express Pax3, MyoD
and Myf5 and that this phosphorylation is critical for
the induction of these genes. What is interesting about
PKA with regards to myogenesis is that although it trig-
gers the expression of several myogenic transcription
factors, it also acts to suppress their transcription activ-
ity. It has been shown that PKA can inhibit the activity
of Myf5, MyoD, myogenin and MEF2D without affecting
their ability to bind DNA [8-10]. In the case of the
MRFs, this appears to occur via an intermediary
mechanism as opposed to direct phosphorylation, but in
the case of MEF2D it is direct.
It is not clear what happens at the onset of differentia-

tion with regards to PKA, although previous results sug-
gest that PKA activity ultimately drops as differentiation
proceeds, at least in C2C12 cells [11]. Obviously, its
repressive effect on the MRFs and MEF2D must be
removed for differentiation to occur, and this could
arise through a reduction in cAMP levels, but what hap-
pens to cAMP upon differentiation is uncertain. Differ-
ent groups have reported conflicting results regarding
cAMP levels and their effect on myoblast differentiation
in secondary cell lines [9,11-14]. What seems clear from
a recent study utilizing primary myoblasts and C2C12
cells is that cAMP does not have an inhibitory effect on
differentiation, but rather enhances both fusion- and dif-
ferentiation-associated hypertrophy [15]. Although PKA
activity would presumably be involved as a consequence
of elevated cAMP, this was not convincingly shown, as
the inhibitor used in that study (H89) is not absolutely
specific to PKA. It was convincingly shown, however,
that the appropriate localisation of PKA is critical for
the positive myogenic effect of cAMP and that this
appropriate localisation may be to lamellipodia. Early
work on PKA and myoblast differentiation in L6 cells
revealed that the establishment of appropriate levels of
the regulatory and catalytic subunits of PKA is critical
for differentiation [16,17]. It may be that PKA activity
and cAMP are inhibitory to differentiation when present
in certain areas (the nucleus, for example) and positive
when found in other areas (lamellipodia). The repressive
effect that PKA has upon the MRFs and MEF2D could
be removed by a change in localisation or increased

nuclear association of the catalytic subunit with its regu-
latory subunits, and this change may go hand in hand
with a positive effect of PKA elsewhere in the cell. Ulti-
mately, more detailed work on the role of PKA and
cAMP during myoblast differentiation needs to be done
to resolve these issues.

Cyclin-dependent kinases
The cyclin-dependent kinases (CDKs) take their name
from a catalytic dependence on the cyclin family of reg-
ulatory proteins. There are several cyclins and CDKs
that collectively control cell cycle progression as well as
other processes. The cyclins, and by extension the
CDKs, can be divided into three major groups: the G1

cyclins, which regulate progression through G1 and
entry into S phase; the mitotic cyclins, which regulate
entry into mitosis; and the non-cell cycle cyclins, which
have cell cycle-independent roles. This last group is not
a typical classification, but we introduce it here because
this group of cyclins/CDKs is important for myogenesis.
The G1 cyclins include cyclins D and E, and are respon-
sible for activating CDK4 (cyclin D), CDK6 (cyclin D)
and CDK2 (cyclins D and E). The mitotic cyclins A and
B activate CDK2 (cyclin A) and CDK1 (cyclin B). Levels
of these cyclins are regulated by intrinsic cell cycle-
derived signals, with the exception of cyclin D, which is
regulated largely by extrinsic signals such as growth fac-
tors [18]. The final group of cyclins that have prominent
roles outside the cell cycle include p35 and cyclin T,
which activate CDK5 and CDK9, respectively. p35 is
technically not a cyclin family member, but it activates
CDK5 in the same allosteric manner as cyclins activate
their CDKs and so we include it here.
In all cell types, the G1 and mitotic cyclins/CDKs reg-

ulate cell cycle progression and proliferation, and myo-
blasts are no different (Figure 2). One of the major
mechanisms by which cell cycle progression is mediated
is through CDK-dependent phosphorylation of the reti-
noblastoma protein (Rb). When phosphorylated, Rb is
unable to bind and inhibit the E2F family of transcrip-
tion factors, whose activities drive cell cycle progression.
In proliferating myoblasts, the CDKs have an additional
role in preventing precocious differentiation. Cyclin E/
CDK2 and cyclin D/CDK4 can both block differentiation
and the transcriptional activity of MyoD [19-24]. Cyclin
E/CDK2 blocks MyoD-induced gene expression through
the phosphorylation of Rb [22], preventing Rb from
binding and transactivating MyoD [25], and triggering S
phase entry instead of differentiation. Overexpression
(or the natural accumulation in myoblasts) of MyoD is
one well-known way to drive myogenic differentiation,
even in nonmyogenic cell lines. Cyclin E/CDK2 can
phosphorylate MyoD at serine 200 [26-28], which causes
ubiquitination and degradation of this transcription
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factor during G1 [28,29], preventing its accumulation
and a commitment to differentiation. Phosphorylation of
MyoD at S200 is common to other CDKs, such as the
mitotic cyclin B/CDK1 [26], which may prevent inap-
propriate MyoD accumulation during mitosis. In con-
trast to CDK2, cyclin D/CDK4 blocks MyoD activity
through an as yet unclear mechanism that may involve
direct binding [22,30,31]. Cyclin D/CDK4 can also block
the activity of myogenin and all MEF2 isoforms [31].
Not much is known about how this occurs, but inhibi-
tion of MEF2C by CDK4 prevents the association of
MEF2 with its transcriptional coactivator, glucocorticoid
receptor-interacting protein 1 (GRIP1) [31]. Whether
CDK6 also plays a role in preventing differentiation is
unknown, although the mechanisms by which the CDKs
block differentiation are likely much more complex than
what we present here.
For myoblasts to differentiate, the cell cycle must be

exited and the restraints the CDKs place on differentia-
tion must be removed. Differentiation cues, such as
serum withdrawal or cell-cell contact in cultured cells,
elicit several effects that ultimately cause a decrease in
G1 and mitotic CDK activity. The expression of cyclin
D1, CDK1, CDK2 and CDK6 drop with differentiation,
while cyclins A, B and E may also decrease
[19-21,23,26,32-41]. At the same time as the expression
levels of these proteins decline, there is an increase in
the levels of the two families of CDK inhibitors (CKIs):
the inhibitor of CDK4 family (INK4) and the cyclin-
dependent kinase-interacting protein/kinase-inhibitory
protein family (CIP/KIP). The INK4 family includes p15,
p16, p18 and p19, and, despite the family name, these
members also inhibit CDK6. The CIP/KIP members
include p21, p27 and p57, and these members inhibit all
G1 CDKs. There is substantial evidence demonstrating
the importance of the CKIs for myoblast differentiation
in vitro and in vivo. The expression levels of p16, p18,
p19, p21, p27 and p57 all increase with differentiation
[27,33,35,38,39,41-46], there is a sharp increase in p27
levels in the myotome at the onset of development [47],
and mice lacking p21 and p57 form defective muscles
[48]. When myoblasts are cued to differentiate, the CKIs
bind and inhibit the G1 and mitotic CDKs
[23,33,35,36,39,41], and do so throughout differentiation
and even in adult tissue, which is important as not all
cell cycle CDKs are lost with differentiation
[20,23,27,35-38]. Unlike the other cyclins mentioned,
cyclin D3 levels increase with differentiation, during
which process this cyclin interacts strongly with CDK2
and CDK4 [19-21,36,37,39,41,49]. However, CDK-con-
taining cyclin D3 complexes lack activity, suggesting
that cyclin D3 may fulfil a necessary role as part of an
inhibitory complex during differentiation. The end result
of these changes in protein expression, whether it be

cyclins, CDKs or CKIs, is a net loss of cell cycle CDK
activity [26,32,33,35,37-39], hypophosphorylation of Rb
[34,36,38], cell cycle exit, accumulation of MyoD [27],
and leave for myoblasts to differentiate.
Once the cell cycle CDKs have been effectively

silenced and the cell cycle exited, the non-cell cycle
CDKs are important for promoting and establishing dif-
ferentiation (Figure 3). These include CDK5 and CDK9,
which are not inhibited by the CKIs discussed above.
The expression of the CDK5-activating protein p35 is
induced with myoblast differentiation and during muscle
regeneration, the more stable and active calpain cleavage
product of p35 (p25) increases as differentiation pro-
gresses, and the activity of CDK5 subsequently increases
[50-53]. Dominant-negative CDK5 that lacks activity
inhibits both differentiation and fusion [50,51,54],
although the mechanisms by which CDK5 activity pro-
motes these processes are not clear. In myoblasts, CDK5
can interact with, phosphorylate and regulate nestin
[51], a negative regulator of differentiation, while nestin
in turn can feed back and control CDK5 activity by pre-
venting the processing of p35 into p25 [54]. Through a
bidirectional relationship, CDK5 and nestin appear to
control the rate at which myoblast differentiation
occurs. Like CDK5, the activity of CDK9 also increases
with differentiation, and this activity is critical for both
in vitro differentiation and in vivo regeneration following
injury [55-57]. Overexpression of it (or its activating
cyclin T2) accelerates differentiation, at least in part
through enhancing the activity of MyoD [55]. Cyclin
T2/CDK9 can interact with and phosphorylate MyoD,
although the consequences of phosphorylation are not
known [55,57]. The interaction between these compo-
nents, however, is critical for MyoD to induce gene
expression. The recruitment of cyclin T2/CDK9 by
MyoD to muscle-specific loci is believed to result in the
phosphorylation and activation of RNA polymerase II by
CDK9, thereby inducing transcription of myogenic
genes [56]. Needless to say, what is known about these
non-cell cycle CDKs and their role in differentiation is
very partial, but highlights how the CDK family of
kinases regulates myogenesis in a number of ways.

Extracellular signal-regulated kinase (FGFR, Raf, MEK,
RSK2)
Extracellular signal-regulated kinase (ERK) was first
identified as an insulin-sensitive kinase that could phos-
phorylate the microtubule-associated protein 2, hence
its original name ‘MAP2 kinase’ or ‘MAP2K’ [58]. It was
later given the more general name ‘ERK’ [59], as its
activity can be stimulated by a variety of growth factors/
mitogens and it has many substrates in addition to
MAP2. It is still generally known as ‘MAPK’, but with
‘MAPK’ now an acronym for ‘mitogen-activated protein
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kinase’. There are several ERK isoforms, and there are
other kinases that go by the name ‘ERK’, but generally,
when used, the name refers to isoforms ERK1 and
ERK2.
ERK1 and ERK2 (ERK1/2) belong to a well-defined

pathway (Figure 2) that is activated by growth factor sti-
mulation of a receptor tyrosine kinase, such as the bind-
ing of fibroblast growth factor (FGF) to its receptor

(FGFR). Autophosphorylation of the growth factor
receptor follows ligand binding and initiates the forma-
tion of an adaptor complex through Src homology 2
(SH2) domain-containing proteins such as GRB2. GRB2
interacts with the guanine-nucleotide exchange factor
SOS, and localisation of these two proteins to the
plasma membrane near the GTPase Ras allows SOS to
catalyse GTP exchange and activation of Ras. GTP-

Figure 3 Regulation of the late myogenic transcriptional program by the kinome. The figure shows the mechanisms by which the kinases
described in the text coordinate myoblast cell cycle exit, myoblast differentiation, myocyte fusion and myotube hypertrophy. Cell-cell contact
and N-cadherin ligation, in conjunction with transforming growth factor-b-activated kinase 1 (TAK1) and MAP kinase kinase 3/6 (MKK), activate
p38a. p38a induces cell cycle exit and differentiation through the phosphorylation of MEF2 and E47 that together with MyoD form part of an
active myogenic transcriptional complex. A subunit of this complex is RNA polymerase II (RNA Pol II), which is phosphorylated and activated by
cyclin-dependent kinase 9 (CDK9). Akt2, in response to IGF stimulation, phosphorylates the transcriptional coactivator and histone
acetyltransferase p300, which is part of the same myogenic transcriptional complex. Activation of the Akt2 pathway promotes differentiation and
hypertrophy by several other mechanisms as well. Akt2 phosphorylates and inactivates the FoxO family of transcription factors, whose activities
are inhibitory to differentiation and hypertrophy. Phosphorylation of the mammalian target of rapamycin (mTOR) by Akt2 encourages protein
synthesis/hypertrophy, partly through mTOR’s phosphorylation and activation of the ribosomal protein S6 kinase 1 (S6K). Akt2 can also
phosphorylate and inhibit glycogen synthase kinase 3b (GSK3). When active, GSK3 inhibits differentiation and hypertrophy through
phosphorylation and cytoplasmic sequestration of NFATC3. Phosphorylation of b-catenin by GSK3 similarly prevents its nuclear accumulation and
ability to activate the TCF/LEF family of transcription factors. Finally, activation of extracellular signal-regulated kinase 2 (ERK2) by an unknown
stimulus promotes cell fusion through the phosphorylation and nuclear accumulation of NFAT3 via the 90-kDa ribosomal S6 kinase 2 (RSK2).
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bound Ras then binds and activates Raf, initiating the
MAP kinase cascade. Raf is a MAP kinase kinase kinase
(MAP3K) that phosphorylates and activates the dual-
specificity MAP or ERK kinase (MEK), which in turn
phosphorylates and activates ERK1/2.
Myoblasts/myocytes have a unique biphasic require-

ment for ERK activity. ERK1/2 is critical for growth fac-
tor-induced cellular proliferation, inhibitory to myoblast
differentiation, and later required for myocyte fusion, or
at least ERK2 appears critical to this last process. One
previous publication also suggested that the Raf-MEK-
ERK pathway might play a role in maintaining satellite
cell quiescence [60], but further experimentation is
required before this can be accepted. What is disap-
pointing about the research that has been done on this
pathway and its role during myogenesis, or rather on
ERK’s role in particular, is that virtually no ERK target
phosphorylations have been studied or even identified. It
is assumed that relevant substrates will be canonical
ERK targets that have been studied in other cell types,
but this has not been shown and there may very well be
novel muscle-specific substrates as well. Research has
instead focused on discovery and further description of
the stages of myogenesis that ERK regulates, with some
insight into secondary mechanisms, but almost nothing
on direct substrates and their role in the myogenic pro-
cess. With that in mind, we shall proceed with a discus-
sion of what is known about the function of ERK and
this pathway during myoblast proliferation and
differentiation.
Evidence from primary cell cultures suggests a critical

role for ERK in myoblast proliferation [61,62], which is
supported by extensive data from secondary cell lines.
In myoblasts, ERK activity can be stimulated by a variety
of growth factors. Serum, a complex mixture of mito-
gens, activates ERK [63-66], but FGF [64,67-71], hepato-
cyte growth factor (HGF) [61], insulin-like growth factor
(IGF) [66,67,70,72-74], leukaemia-inhibitory factor (LIF)
[75], and platelet-derived growth factor (PDGF) [73,76]
can do so in isolation. Not all of these growth factors
elicit the same response from ERK, however. FGF, HGF
and IGF activate ERK to induce or maintain prolifera-
tion [61,67,69-72,77], while PDGF does not but can
enhance survival [73,76]. During proliferation, ERK
activity prevents cell cycle exit during G1 [78], and FGF/
ERK’s role during myoblast proliferation may be to pre-
vent cell cycle exit and promote entry into S phase
[69,79]. How ERK accomplishes these functions, and
particularly how different responses are elicited from it
by different growth factors, is unknown. Of the different
ERK-inducing growth factors, FGF has been the best
studied in the context of myoblast proliferation, and the
signalling cascade that results from FGF stimulation is
as described above [69-71,80,81], although it should be

mentioned that FGF appears to affect proliferation by an
additional ERK-independent pathway as well [69,82].
Although almost nothing is known about how ERK

positively affects myoblast proliferation, not much more
is known about how it prevents premature differentia-
tion, although it is clear that it does. ERK only mediates
this effect for certain growth factors, however. IGF and
FGF can both stimulate ERK activity, but once cells
reach confluency in culture, IGF stimulation promotes
differentiation [66,72] while FGF stimulation prevents it
[64,68-70,76,83-89]. This is likely due to IGF’s ability to
induce other pathways in addition to that of ERK (see
Akt section below), and demonstrates how the role that
ERK activity is playing needs to be considered within
the physiological context in which it occurs. In the con-
text of FGF-induced activity, the Ras-Raf-MEK-ERK
pathway is able to inhibit differentiation
[62,64,70,78,81,88-100] by preventing the nuclear accu-
mulation of MEF2 [96], and preventing the expression
of certain myogenic factors, including MyoD
[85-87,101-104], the CDK inhibitor p21 [94,95] and
other transcriptional regulatory proteins [105]. ERK’s
and FGF’s ability to prevent myoblast differentiation is
supported by the biochemical observation that during
differentiation FGF receptors are lost [106,107] and the
activity of ERK decreases [52,66,81,92,95,97,108]. Again
it appears that this critical role of ERK in blocking dif-
ferentiation occurs specifically during G1 [84], possibly
as an inhibitory cue that prevents the accumulation of
proteins that would drive cells into a postmitotic pheno-
type. As mentioned, the substrates that ERK acts on to
prevent myoblast differentiation are unknown.
ERK activity does initially decrease with myoblast dif-

ferentiation, which is necessary for differentiating myo-
blasts to overcome the inhibitory effect that it has, but
ERK’s activity comes back on as differentiation proceeds
[66,92,93,95,97,104,108-110]. ERK activity, and specifi-
cally that of the ERK2 isoform, is critical for myocyte
fusion and survival (Figure 3) [77,92,93,95,104,109]. ERK
can phosphorylate and activate the 90-kDa ribosomal S6
kinase 2 (RSK2), which positively regulates myocyte
fusion through phosphorylation and transcriptional acti-
vation of nuclear factor of activated T cell 3 (NFAT3)
[111]. ERK activity also stimulates the transcriptional
activity of MyoD by an as yet to be described mechan-
ism [104], and, contrary to ERK’s role in myoblasts, it
now enhances the expression of p21 [95,110]. There
may be uncoupling of the Raf-MEK-ERK pathway dur-
ing myocyte fusion as there are contradictory data on
the function of Raf, with different reports describing
both positive and negative roles for it [94,98,104,110],
although it is clear that both MEK and ERK play posi-
tive roles. Similarly, FGF is certainly inhibitory to fusion,
and so the growth factor or mechanism stimulating ERK
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activity in myocytes is unknown and the pathway pro-
moting this activity needs further elucidation.

p38a (TAK1, MKK3/6)
The p38 family of MAPKs are closely related to the ERK
MAPKs discussed above, and take their rather unimagi-
native name from their apparent molecular weight. The
a isoform of the p38 family was initially identified as an
effector of the cellular stress response [112-115], but has
also been shown to be critical for the differentiation of
numerous cell types [116-121]. There are three other
p38 isoforms, b, g and δ, but only p38a appears uni-
formly critical for differentiation, with the other iso-
forms either unnecessary or with insufficient evidence
supporting an essential role.
At the turn of the century, several groups reported a

critical role for one of or both the p38a and b isoforms
during myoblast differentiation [95,97,122-125]. It was
found that p38 activity was induced during differentia-
tion in culture and that inhibition of the a and b iso-
forms blocked the induction and/or activation of
myogenic and muscle-specific genes, as well as pre-
vented myocyte fusion. These studies were all performed
with secondary cell lines (C2C12, L6E9, L8 and trans-
formed 10T1/2), but in vivo work has confirmed that
p38 activity is indeed critical for myoblast differentia-
tion. During embryonic development, p38 activity is
induced in somites, and inhibition does not affect the
myogenic commitment of cells but does block the
induction of the myotomal muscle marker myosin light
chain 3F (MLC3F) [126]. Most recently, the group of
Pura Muñoz-Cánoves has demonstrated through iso-
form-specific knockout in mice that p38a is absolutely
critical for the differentiation of primary myoblasts,
while b and δ are not necessary for either differentiation
or cardiotoxin-induced regeneration, and the g isoform
appears necessary only for optimal fusion of myoblasts
[127-129]. It should be noted, however, that a discre-
pancy may exist between primary myoblasts and C2C12
cells, as the a, b and g isoforms all appear to be essen-
tial for C2C12 differentiation [125,130,131], highlighting
that the model system being used always needs to be
taken into consideration.
Cell-cell contact in myoblast cultures triggers preco-

cious differentiation, and contact is at least one mechan-
ism by which p38a is activated (Figure 3). N-cadherin
ligation between cells initiates the formation of a com-
plex that includes the cell surface protein Cdo and scaf-
folding proteins that recruit p38 in addition to other
components [132-134]. Precisely how this complex
results in p38 activation is not known, but complex
recruitment of the GTPase Cdc42 is required for p38
phosphorylation. However, as noted by Kang et al.
[133], although Cdo complex formation appears to be a

major mechanism behind p38 activation in differentiat-
ing myoblasts, it is likely not the only mechanism, as
there are additional ways to activate p38 in the absence
of Cdo complex components. Transforming growth fac-
tor b-activated kinase 1 (TAK1) is an upstream activat-
ing MAP3K that is essential for myoblast differentiation
in a p38-dependent manner [135], and activation of this
kinase is traditionally associated with transforming
growth factor (TGF) stimulation as opposed to N-cad-
herin ligation. TAK1 can phosphorylate and activate
MAP kinase kinase 3/6 (MKK3/6), and numerous stu-
dies have demonstrated a requirement for MKK3/6
activity in the initiation of myoblast differentiation,
again in a p38-dependent manner. Whether N-cadherin
ligation and Cdo are coupled to TAK1 and MKK3/6 is
not known, and so it is not possible to present a clear
pathway for p38 activation during differentiation.
Once activated, p38 is involved in multiple prodiffer-

entiation processes (Figure 3). It has a powerful ability
to trigger cell cycle exit, and can even force cell cycle
exit in rhabdomyosarcoma cells [136]. The mechanisms
by which it does so have not been well elucidated, but it
can downregulate canonical proliferation markers such
as cyclins A, D and E, as well as phosphorylated Rb
[127,128,137]. Chromatin remodelling is a candidate
mechanism by which p38 activity might trigger the
downregulation of cell cycle-related genes. p38 can
phosphorylate the histone-lysine N-methyltransferase
EZH2, the catalytic subunit of the polycomb repressive
complex 2 (PRC2), with phosphorylation of EZH2
necessary for PRC2’s association with the transcriptional
repressor YY1 and subsequent chromatin remodelling
[138]. One target of this complex in myoblasts is the
Pax7 promoter, and downregulation of Pax7 is a neces-
sary step before differentiation can occur.
At the same time as p38 creates a repressive chroma-

tin environment for Pax7 and possibly other genes, it
creates a permissive environment at myogenic loci. p38
phosphorylates the BAF60 subunit of the SWI-SNF
chromatin remodelling complex, and p38 recruits this
complex to differentiation-specific loci [137,139].
Through phosphorylation of MEF2D, p38 recruits an
Ash2l-containing complex to myogenic loci during dif-
ferentiation, which results in the marking of these genes
for expression [140]. As a permissive environment is
created at these loci, p38 further stimulates gene expres-
sion through the phosphorylation of additional myo-
genic transcription factors, including MEF2C
[95,123,126] and E47 [141]. Phosphorylation of MEF2C
is necessary for its transcriptional activation, and E47
phosphorylation allows heterodimerisation with and
activation of MyoD. p38 also plays a critical role in acti-
vating other myogenic factors. Nuclear translocation of
p65 during differentiation is p38-dependent [142], as is
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MyoD activity [95,123,125,127,136], partly through E47
phosphorylation and heterodimerisation but likely via
other means as well. Ultimately, through these and pos-
sibly other mechanisms, p38 has the ability to affect the
expression of a multitude of genes. Some of those
directly relevant to differentiation and not already men-
tioned include Akt [143,144], caveolin 3 [124] and IGF2
[145].
The responsibility of p38 during myoblast differentia-

tion is not limited to gene regulation, but includes a cri-
tical role in other processes as well. Briata et al. [146]
showed that p38 phosphorylates the mRNA decay-pro-
moting KH type-splicing regulatory protein (KSRP).
Phosphorylation prevents KSRP from associating with
select transcripts, resulting in transcript stabilization,
and in the case of differentiating myoblasts this allows
for the accumulation of mRNA for at least two very cri-
tical myogenic proteins: the CDK inhibitor p21 and
myogenin. Also, current work from our own laboratory
shows that during myoblast differentiation active p38
accumulates in the cytoplasm and can phosphorylate
dozens of cytosolic proteins with a variety of known
functions, suggesting that the role of p38 during myo-
genesis likely goes far beyond gene regulation (JDR
Knight, R Tian, REC Lee, F Wang, H Zou, LA Megeney,
D Figeys, R Kothary, unpublished work).
Finally, it needs to be mentioned that the literature is

not in complete consensus regarding the role of p38
during myoblast differentiation. A potentially conflicting
result was published by Weston et al. [147], who
showed that inhibiting p38a/b in a mixed culture of pri-
mary limb mesenchymal cells supports and accelerates
the terminal differentiation of myocytes. Specifically,
cells that already express myosin heavy chain appear to
undergo accelerated fusion and/or hypertrophy, along
with an increased expression of myogenic markers fol-
lowing p38 inhibition. These results suggest that in this
type of heterogeneous environment, p38 activity, in con-
cert with a particular milieu of factors released by non-
myogenic cells, may serve to restrict the late stages of
myocyte differentiation, or that obstructing p38 activity
in nonmyogenic cells present in the coculture results in
the release of potent myogenic factors that drive term-
inal myocyte differentiation even in the absence of active
p38. As no further work has been done on this model
system and more experiments are required, it is not
possible to reconcile these findings with the extensive
data produced using other models.

Akt (IGFR, GSK3b, mTOR, S6K)
The protein kinase Akt first became known as the pro-
duct of the oncogenic v-akt gene of the Akt8 murine
retrovirus [148]. The retroviral oncogene has three
mammalian cellular homologues (Akt1, Akt2 and Akt3)

that code for a protein kinase with an N-terminal pleck-
strin homology (PH) domain [148-153]. Owing to its
independent discovery by three separate groups, it has
two additional names: protein kinase B (PKB) and the
related to the A and C kinases (RAC-PK), on the basis
of its homology [149,151].
Akt forms part of a well-studied pathway (Figure 3),

and for a review, see, for example, the articles by Glass
[154] and Franke [155]. This pathway mediates the
effects of insulin and IGF and includes several kinases
that shall be discussed together here, although focus is
placed on Akt. The pathway is activated by the binding
of IGF to the IGF receptor (or of insulin to the insulin
receptor), and, like most growth factor receptors, IGFR
contains a tyrosine kinase domain that autoactivates
upon ligand binding. A principal target of IGFR is the
insulin receptor substrate (IRS), which, when phos-
phorylated, recruits the lipid kinase phosphatidylinositol
3-kinase (PI3K) through the SH2 domain of its regula-
tory subunit (p85), triggering activation of the catalytic
subunit. PI3K produces the membrane-bound phospha-
tidylinositol (3,4)-bisphosphate (PI(3,4)P2) and phospha-
tidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) from PI(4)
P and PI(4,5)P2, respectively. These phosphoinositide
products localise PH domain-containing proteins to the
plasma membrane, including Akt, the constitutively
active phosphoinositide-dependent kinase 1 (PDK1), and
“PDK2”. The colocalisation of these kinases allows for
PDK1 and PDK2 to phosphorylate Akt at distinct sites,
with both phosphorylations necessary for activation.
PDK2 is not a single kinase but rather a group of
kinases [156], any one of which has the ability to phos-
phorylate Akt at the required site. Two major kinase
targets of Akt are the mammalian target of rapamycin
(mTOR) and glycogen synthase kinase 3b (GSK3b).
Phosphorylation of mTOR by Akt activates it, resulting
in an increase in protein synthesis, while Akt’s phos-
phorylation of GSK3b inactivates this kinase, thereby
removing the restraint that GSK3b places on differentia-
tion and hypertrophy. One final, well-characterized
member of this pathway is the ribosomal protein S6
kinase 1 (S6K), which is phosphorylated and activated
by mTOR to positively and further regulate protein
translation.
This pathway, with Akt at its heart, is activated by IGF

or insulin stimulation, but there is evidence to suggest
that Akt can be activated by other mechanisms in mus-
cle cell lines. Elia et al. [157] showed that Sonic hedge-
hog (SHH) can stimulate Akt phosphorylation and
myogenic gene expression, and, similar to work done on
the p38 pathway, Bae et al. [158] showed that Akt can
be activated from cell-cell contact through Cdo activa-
tion and the recruitment of the Akt-interacting partner
APPL1. There is evidence to suggest that APPL1 may
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function downstream of insulin in myoblasts [159,160],
indicating that cell-cell contact and insulin/IGF may
cooperate to activate Akt. Whether SHH also cooperates
with this pathway or stimulates one in parallel is
unclear, but there is certainly more to be discovered
about the mechanisms of Akt activation.
While the pathway of Akt activation requires addi-

tional elaboration, the importance of the IGF-Akt axis
to myogenesis cannot be debated. It has been demon-
strated in culture that IGF is critical to, and a potent sti-
mulator of, myoblast differentiation and hypertrophy,
and that muscle cell lines upregulate IGF2 upon differ-
entiation [87,161-167]. These results carry over in vivo,
as IGF overexpression in mice triggers myoblast differ-
entiation, myofibre hypertrophy and regeneration
[168-170]. Several studies have shown that Akt activity
is induced during myoblast differentiation, and that its
activity is critical for the induction of differentiation and
hypertrophy both in culture and in vivo
[52,94,125,144,171-175]. IGF can also have a positive
effect on myoblast proliferation under certain condi-
tions, and Akt may be critical for proliferation as well
[176,177], although the details regarding this pathway
are poorly understood. We shall discuss the proliferative
capabilities of IGF and Akt in greater detail below after
first introducing the different Akt isoforms and their
respective myogenic responsibilities.
IGF can activate any of the three Akt isoforms, and

currently both Akt1 and Akt2 have been implicated in
myogenesis, while Akt3 has not. There is very strong
evidence to suggest that isoforms 1 and 2 are required
at different stages, although how their activation is dif-
ferentially controlled is unknown. Protein levels of Akt1
remain constant from proliferating to differentiating
cells, whereas the levels and activity of Akt2 increase
with differentiation [143,176,178-181]. Consistent with
these observations, Akt2 drives differentiation
[176,177,181-183], while Akt1 appears critical to myo-
blasts for proliferation but is dispensable for differentia-
tion and may even be inhibitory to the latter process
when activated alone [176,177,183,184]. Conversely,
Akt2 is dispensable for proliferation and cannot rescue
Akt1 knockdown in proliferating myoblasts [176,177]. It
should be noted, however, that overexpression of a con-
stitutively active mutant of either isoform can initiate
and drive differentiation, but this is likely an artefact
that results from artificially elevated Akt levels. It is dif-
ficult to be conclusive at the moment, especially as little
work has been done in vivo or in primary cells, but
there is certainly strong evidence to support distinct
roles for Akt1 and Akt2 during myogenesis.
When myoblasts are initially treated with IGF, there is

a proliferative response and differentiation is prevented
[67,72,74,177,185-187]. This response is induced largely

when myoblasts are subconfluent and is mediated in
part by IGF-induced phosphorylation of ERK1/2, as well
as Akt1 (Figure 2). Few targets of Akt1 in proliferative
myoblasts are known, but once activated, Akt1 phos-
phorylates the cyclin kinase inhibitor p21, triggering its
dissociation from CDK2 and leading to cell cycle pro-
gression [74,177]. Akt can also phosphorylate forkhead
box protein O1 (FoxO1) in myoblasts, with phosphory-
lation blocking nuclear translocation of the transcription
factor and inhibiting expression of FoxO1-regulated
transcripts such as the CDK inhibitor p27 [187]. Evi-
dence suggests that this IGF proliferative pathway can
be turned off either by inhibiting ERK1/2, or through
the activation of Akt2 [72,94,99,177]. Once confluent,
cell-cell contact is known to antagonize ERK1/2 activa-
tion in other cell types [188-191], and in myoblasts con-
fluency induces p38 activity as described in the previous
section, which in turn leads to the upregulation of Akt2
transcript levels [143]. Contrary to Akt1, Akt2 interacts
with p21 but does not phosphorylate it, and instead
appears to prevent phosphorylation by Akt1 [177]. This
Akt2-p21 complex can then inhibit CDK2 and allow cell
cycle exit and differentiation. Hence the switch from an
IGF-induced proliferative response to an induction of
differentiation may be controlled largely by the degree
of cell-cell contact present.
Once Akt2 becomes activated, it triggers myoblast cell

cycle exit (Figure 3). It does so by phosphorylating the
pituitary homeobox 2 (Pitx2) transcription factor (which
cannot be phosphorylated by Akt1) [192]. Pitx2 interacts
with the mRNA binding protein HuR to stabilize cyclin
D1 transcript levels to maintain proliferation, while
Akt2 phosphorylation of Pitx2 causes dissociation of this
complex and degradation of cyclin D1 mRNA. Once cell
cycle exit has occurred, Akt’s phosphorylation (and inhi-
bition) of the FoxO family of transcription factors now
allows differentiation to occur [193], as these transcrip-
tion factors, although apparently necessary for cell cycle
exit in myoblasts [187], are inhibitory to differentiation.
Akt activity is also critical for the production of myo-
genic transcripts, partly through positive regulation of
MyoD and MEF2C transcriptional activities
[172,181,194]. Akt can phosphorylate the transcriptional
coactivator p300, which results in the formation of an
active p300-MyoD complex [137]. In myoblasts, MyoD
and MEF2 activities are suppressed, partly from being
bound to the transcriptional repressor prohibitin 2
(PHB2). Akt2 can remove this repression through bind-
ing to and downregulating PHB2 [183,195], allowing
MyoD and MEF2 transcriptional activation, although
whether Akt2-mediated phosphorylation of PHB2 occurs
is unknown. A further factor that triggers differentiation
in response to Akt activity is the phosphorylation and
inactivation of GSK3b. When active, GSK3b represses
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myoblast differentiation and fusion [182,196-198]
through inhibitory phosphorylations of b-catenin and
NFATC3. The silencing of GSK3b activity by Akt allows
for the accumulation and nuclear translocation of b-
catenin [182,198], resulting in the activation of the TCF/
LEF family of transcription factors. GSK3b’s phosphory-
lation of NFATC3 hides this transcription factor’s
nuclear localisation signal, thereby preventing nuclear
accumulation and transcription of its dependent genes,
while Akt’s phosphorylation and inhibition of GSK3b
allows this NFATC3 accumulation to occur [197,198].
The end result of GSK3b inactivation is the activation
of transcription factors that initiate the production of
numerous myogenic transcripts.
Following commitment to differentiation, Akt is

further required for the growth/hypertrophy of myo-
tubes (Figure 3). Its multifaceted role during hypertro-
phy is emphasized by the fact that the exogenous
overexpression of myogenic factors such as MyoD or
myogenin cannot compensate for the absence of Akt
activity during this process [199]. During hypertrophy,
Akt is still responsible for phosphorylating and inactivat-
ing GSK3b as it was at the onset of differentiation, as
GSK3b is inhibitory to both stages of myogenesis
[173,198,200,201]. Similarly, Akt’s phosphorylation of
the FoxO family of transcription factors is necessary not
just for differentiation but also for hypertrophy. FoxO
activity stimulates expression of the atrophy-inducing,
muscle-specific ubiquitin ligases MAFbx and MuRF1
[202,203], and Akt therefore blocks the expression of
these ligases. One of the most well-studied downstream
targets of Akt in muscle is mTOR, whose phosphoryla-
tion and activity are induced during hypertrophy [204].
mTOR itself is in fact required for both differentiation
and hypertrophy [72,122,174], but its kinase activity is
required only for the latter [204-209]. Approximately
90% of the genes regulated by IGF in differentiating
myoblasts are mTOR-dependent [210], emphasizing the
importance of this kinase as a hypertrophic IGF effector.
mTOR, together with S6K, an mTOR substrate whose
activity is induced during and critical to hypertrophy
[72,108,122,175,204,205,209,211], trigger protein synth-
esis and growth by initiating cap-dependent translation.
mTOR activity also leads to the upregulation of miR-1,
which inhibits HDAC4 expression, thereby allowing the
upregulation of critical myogenic genes, including the
profusion protein follistatin [212].
A substantial amount of research on the IGF-Akt sig-

nalling axis has been conducted, and we have briefly
summarized it here. Further research regarding the dis-
tinct roles of Akt1 and Akt2 is required: if, in fact, there
is a distinction; how they are differentially regulated;
and the similarities and differences between downstream
targets. Over 100 Akt substrates are known, but very

few have been studied during myogenesis. We have
described the handful of substrates that have been stu-
died, but this must be a very incomplete picture, and so
there is still much room for further exploration.

Conclusions
As we have reviewed here, the differential activation
(and inhibition) of distinct protein kinases acts to con-
trol the formation of a mature myotube from a popula-
tion of embryonic precursors or satellite cells. Although
there is more to be discovered, a synthesis of the avail-
able information reveals a kinase hierarchy that coordi-
nates myogenesis in a fashion analogous to the
myogenic transcription factors. Initially, during develop-
ment, and likely via analogous mechanisms during juve-
nile and adult myogenesis, the presence of specific Wnts
induces PKA activity and the myogenic commitment of
precursors to form a pool of dividing myoblasts. Growth
factors, and likely other extrinsic components, then acti-
vate ERK1/2, Akt1 and cyclin D/CDK2, 4 and 6 to pro-
mote proliferation, which, along with PKA, act
simultaneously to restrict differentiation. Intrinsic cell
cycle-derived signals regulate the levels of cyclins A, B
and E, which, together with their respective CDKs, pro-
mote cell cycle progression and inhibit differentiation.
As the myoblast population expands to the threshold of
available space, cell-cell contact can turn off ERK, and a
decline in certain growth factors can further silence
ERK and downregulate cyclin D/CDK2, 4 and 6 activity,
to inhibit additional proliferation. With the silencing of
ERK and cell cycle CDK activity, and proliferation les-
sening, cell-cell contact can promote differentiation
through p38 and possibly Akt2 as well. Certain
unknown cues may also relocalise PKA activity to
remove its restraint on differentiation while allowing it
to have a positive effect elsewhere in the cell. Similarly,
undefined signals lead to an upregulation of p35 and
cyclin T levels to induce the activity of CDK5 and 9,
respectively. An increasing concentration of IGF, which
is released during differentiation, stimulates Akt2 activ-
ity to drive differentiation and hypertrophy, and elevated
IGF levels may also induce ERK2 activity at later time
points to promote fusion. Finally, as differentiation pro-
gresses, p38 activity relocalises to the cytoplasm, where
it promotes the mid to late stages of differentiation.
The protein kinase scheme we present herein demon-

strates how a number of kinases are used by myogenic
cells to transition from state to state, and the intricate
signalling used to coordinate the proper development of
muscle tissue. As complex as is the picture we offer, it
is only partial. Not only does more need to be known
about the kinases we have discussed, but there are many
other kinases that have been implicated in controlling
some aspect of myogenesis (Table 1). As research on
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muscle development continues, it will be interesting to
learn how these other kinases fit in with the picture pre-
sented here. It is important to state that much of what
is known about kinases and myogenesis relates either to
myoblast proliferation, differentiation or myotube hyper-
trophy, while very little is known about the kinase sig-
nalling that regulates satellite cell quiescence and
activation, as well as myocyte fusion. While Pax7 is a
well-established marker and regulator of satellite cells,
almost nothing is known about the protein kinases that
regulate satellite cell quiescence or maintenance. With
respect to fusion, not only is there limited information
about the kinases that control this process, but little is
known about it in general, which is surprising, consider-
ing its obvious importance to the most unique feature
of muscle tissue: the multinucleated cell. Although
fusion and hypertrophy are the end stage of our descrip-
tion of myogenesis, further stages could be added,
including precursor migration, sarcomere formation and
neuromuscular junction development. The prospect of a
comprehensive review on myogenic signalling is an
almost overwhelming one, due to the number of

different cell states, processes and network complexity
involved, but we hope to have begun clarifying it.

Abbreviations
Akt: v-akt murine thymoma viral oncogene cellular homologue, a.k.a. protein
kinase B (PKB), a.k.a. the related to the A and C kinases (RAC-PK); APPL1:
adapter protein containing PH domain, PTB domain and leucine zipper
motif 1; Ash2l: Ash2-like methyltransferase; BAF60: BRG1-associated factor 60;
Cdc42: cell division control protein 42; CDK: cyclin-dependent kinase; Cdo:
cell adhesion molecule-related/downregulated by oncogenes; CIP/KIP: cyclin-
dependent kinase-interacting protein/kinase-inhibitory protein; CKI: CDK
inhibitor; CREB: cAMP response element-binding protein; ERK: extracellular
signal-regulated kinase, a.k.a. microtubule-associated protein 2 kinase
(MAP2K); EZH2: enhancer of zeste homologue 2; FGF: fibroblast growth
factor; FGFR: fibroblast growth factor receptor; FoxO1: forkhead box protein
O1; GFR: growth factor receptor; GRB2: growth factor receptor-bound
protein 2; GRIP-1: glucocorticoid receptor-interacting protein 1; GSK3β:
glycogen synthase kinase 3β; HDAC: histone deacetylase; HGF: hepatocyte
growth factor; HuR: human antigen R; IGF: insulin-like growth factor; IGFR:
insulin-like growth factor receptor; INK4: inhibitor of cyclin-dependent kinase
4; IRS: insulin-receptor substrate; KSRP: KH type-splicing regulatory protein;
LIF: leukaemia-inhibitory factor; MAFbx: muscle atrophy F box; MAPK:
mitogen-activated protein kinase; MAP3K: mitogen-activated protein kinase
kinase kinase; MEF2: myocyte enhancer factor 2; MEK: dual-specificity MAP or
ERK kinase; MKK3/6: mitogen-activate protein kinase kinase 3/6; MRF4:
muscle-specific regulatory factor 4; mTOR: mammalian target of rapamycin;
MuRF1: muscle RING finger 1; Myf5: myogenic factor 5; MyoD: myoblast
determination protein; NFAT3: nuclear factor of activated T cell 3; p38: p38

Table 1 Other protein kinases implicated in myogenesis

Stagea Kinase Full name Mechanismb References

Satellite cell
activation

c-Metc N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) human
osteosarcoma (HOS) transforming oncogene cellular
homologue

? [213-215]

Proliferation and/or
inhibit differentiation

JAK1 Janus/just another kinase 1 Phosphorylation and activation of
STAT1

[216]

p38g p38g mitogen-activated protein kinase Phosphorylation and repression of
MyoD activity

[217]

ROCK1 Rho-associated kinase 1 Blocks activation of the Akt
differentiation pathway

[218-220]

Differentiation c-Abl Abelson murine leukaemia viral
oncogene cellular homologue

Activation of p38 [221,222]

CaMK1/
4

Calcium/calmodulin-dependent protein kinases 1 and 4 Phosphorylates HDAC5, thereby
releasing repression of MEF2

[223-226]

DYRK1B Dual-specificity tyrosine phosphorylation-regulated kinase 1B Phosphorylates HDAC5 and HDAC9,
thereby releasing repression of MEF2

[227,228]

MAPK7d Mitogen-activated protein kinase 7 Phosphorylation and activation of
MEF2C

[229,230]

JAK2 Janus/just another kinase 2 Phosphorylation and activation of
STAT2 and STAT3

[216,231]

PKCζ Protein kinase Cζ Activation of CDK5 [53]

PKD2 Protein kinase D2 Activation of MEF2D and repression of
Pax3

[232]

Fusion cGK1 Cyclic GMP-dependent protein kinase 1 Phosphorylation and inactivation of
FoxO1

[233]

FAK Focal adhesion kinase Fusogen expression [234,235]

PKCθ Protein kinase Cθ Activation of FAK [234]

Hypertrophy ROCK2 Rho-associated kinase 2 Activation of ERK2 and S6K [236]

The protein kinases listed are those that have been clearly implicated in regulating some aspect of myogenesis but have not been studied in detail.
aThe stage of myogenesis regulated by the indicated kinase. bThe mechanism the indicated kinase has been implicated in regulating. cAlso known as hepatocyte
growth factor/scatter factor receptor (HGFR/SFR). dAlso known as big MAP kinase 1 (BMK1) or extracellular signal-regulated kinase 5 (ERK5).
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mitogen-activated protein kinase; p65/RelA: v-rel reticuloendotheliosis viral
oncogene cellular homologue A; Pax7: paired-box protein 7; PDGF: platelet-
derived growth factor; PDK1: phosphoinositide-dependent kinase; PH:
pleckstrin homology; PHB2: prohibitin 2; PI3K: phosphatidylinositol 3-kinase;
PI(3,4)P2: phosphatidylinositol (3,4)-bisphosphate; PI(3,4,5)P3:
phosphatidylinositol (3,4,5)-trisphosphate; PI(4)P: phosphatidylinositol 4-
phosphate; PI(4,5)P2: phosphatidylinositol (4,5)-bisphosphate; Pitx2: pituitary
homeobox 2; PKA: protein kinase A, a.k.a. cAMP-dependent protein kinase;
PRC2: polycomb repressive complex 2; Rb: retinoblastoma protein; RSK2: 90-
kDa ribosomal S6 kinase 2; S6K: ribosomal protein S6 kinase 1; SH2: Src
homology 2; SHH: Sonic hedgehog; SOS: son of sevenless; STAT: signal
transducer and activator of transcription; SWI-SNF: switch/sucrose
nonfermentable; TAK1: transforming growth factor β-activated kinase 1; TCF/
LEF: T-cell factor/lymphoid enhancer-binding factor; TGF: transforming
growth factor; Wnt: wingless/int; YY1: yin and yang 1.
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