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Abstract

Background: Muscle protein turnover regulation during cancer cachexia is being rapidly defined, and skeletal
muscle mitochondria function appears coupled to processes regulating muscle wasting. Skeletal muscle oxidative
capacity and the expression of proteins regulating mitochondrial biogenesis and dynamics are disrupted in severely
cachectic ApcMin/+ mice. It has not been determined if these changes occur at the onset of cachexia and are
necessary for the progression of muscle wasting. Exercise and anti-cytokine therapies have proven effective in
preventing cachexia development in tumor bearing mice, while their effect on mitochondrial content, biogenesis
and dynamics is not well understood. The purposes of this study were to 1) determine IL-6 regulation on
mitochondrial remodeling/dysfunction during the progression of cancer cachexia and 2) to determine if exercise
training can attenuate mitochondrial dysfunction and the induction of proteolytic pathways during IL-6 induced
cancer cachexia.

Methods: ApcMin/+ mice were examined during the progression of cachexia, after systemic interleukin (IL)-6r
antibody treatment, or after IL-6 over-expression with or without exercise. Direct effects of IL-6 on mitochondrial
remodeling were examined in cultured C2C12 myoblasts.

Results: Mitochondrial content was not reduced during the initial development of cachexia, while muscle PGC-1α
and fusion (Mfn1, Mfn2) protein expression was repressed. With progressive weight loss mitochondrial content
decreased, PGC-1α and fusion proteins were further suppressed, and fission protein (FIS1) was induced. IL-6
receptor antibody administration after the onset of cachexia improved mitochondrial content, PGC-1α, Mfn1/Mfn2
and FIS1 protein expression. IL-6 over-expression in pre-cachectic mice accelerated body weight loss and muscle
wasting, without reducing mitochondrial content, while PGC-1α and Mfn1/Mfn2 protein expression was suppressed
and FIS1 protein expression induced. Exercise normalized these IL-6 induced effects. C2C12 myotubes administered
IL-6 had increased FIS1 protein expression, increased oxidative stress, and reduced PGC-1α gene expression without
altered mitochondrial protein expression.

Conclusions: Altered expression of proteins regulating mitochondrial biogenesis and fusion are early events in the
initiation of cachexia regulated by IL-6, which precede the loss of muscle mitochondrial content. Furthermore, IL-6
induced mitochondrial remodeling and proteolysis can be rescued with moderate exercise training even in the
presence of high circulating IL-6 levels.
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Background
Although the regulation of muscle protein turnover dur-
ing cachexia is rapidly being defined and the importance
of protein degradation processes is clearly demonstrated,
questions remain related to the underlying physiological
drivers that initiate alterations in these processes
throughout the progression of cachexia. There is accu-
mulating scientific support for differential mechanisms
contributing to muscle loss during transition from the
initiation of cachexia toward severe cachexia [1,2]. We
have recently described differential regulation of muscle
protein turnover between the initial stages of cachexia
and severe body weight loss in the ApcMin/+ mouse [1].
With wasting conditions, a reduction in aerobic capacity
is clearly associated with the degree of body weight and
muscle mass loss [3,4]. Emerging evidence also provides
for a role of muscle mitochondria in the regulation of
muscle protein turnover [5]. Mitochondrial dynamics
and biogenesis are sensitive to contractile activity, in
particular endurance based exercise [6,7]; however, the
underlying mechanisms governing these processes dur-
ing conditions of skeletal muscle wasting remain poorly
defined.
The coordinated balance between mitochondrial fis-

sion and fusion, referred to as mitochondria dynamics
[8], and muscle protein degradation have been described
by Romanello and Sandri [5]. The proposed model sug-
gests mitochondrial dysfunction results in reactive oxi-
dative species, susceptibility to apoptosis and energy
stress. These processes can lead to downstream activa-
tion of muscle proteolytic activation through AMPK and
FoxO activation [5]. Previous reports from our labora-
tory have shown cachectic ApcMin/+ mice to have
reduced muscle mitochondrial content associated with
increased apoptosis, suppression of the peroxisome
proliferator-activated receptor-gamma co-activator 1
alpha (PGC-1α) and altered regulation of mitochondrial
fission and fusion independent of oxidative stress [9,10].
In addition, we have recently shown increased activation
of AMPK and FoxO in muscle from severely cachectic
ApcMin/+ mice [1]. The increase in fission and decrease
in PGC-1α and mitochondrial fusion during cachexia
has been previously reported [9]; however, it is not
known if these alterations are early events in the onset
of muscle wasting, and have a regulatory role in the pro-
gression of cachexia.
Inflammatory cytokines are well-established mediators

of muscle wasting during cancer cachexia [11,12], and
anti-cytokine treatments can attenuate cachexia progres-
sion [1,13,14]. In the ApcMin/+ mouse model of cachexia,
the cytokine IL-6 is necessary for muscle wasting [15],
and over-expression of circulating IL-6 in precachectic
ApcMin/+ mice accelerates the development of cachexia
[16]. We have recently reported that IL-6 receptor (IL-
6r) antibody administration to cachectic ApcMin/+ mice
attenuates further progression of cachexia [1], and was
associated with suppressed muscle protein degradation.
IL-6r antibody administration also represses lysosomal
and autophagy-related protein expression in cachectic
muscle [1,14]. There is supporting evidence for direct
effects of IL-6 on muscle mitochondrial dynamics as
treating cultured human myoblasts with IL-6 results in a
reduction in the mitochondrial fusion protein Mfn2 [17].
However, IL-6 regulation of muscle mitochondrial re-
modeling during the progression of cachexia is not clear
and warrants further attention.
Endurance exercise training increases skeletal muscle

oxidative capacity [6,7] and has been effectively used as
a counter measure for numerous muscle wasting condi-
tions, including diabetes [18], chronic obstructive pul-
monary disease (COPD) [19], renal disease [20] and
cardiac cachexia [21]. We have recently found that IL-6
over-expression-induced bodyweight and muscle mass
loss in ApcMin/+ mice is prevented by moderate treadmill
exercise, and is associated with an induction of muscle
oxidative protein expression [22]. Due to these findings,
the current study has pursued an enhanced understand-
ing of how mitochondrial content, biogenesis and dy-
namics are regulated during the progression of cachexia
by IL-6. The purposes of this study were to 1) determine
IL-6 regulation on mitochondrial remodeling/dysfunc-
tion and the subsequent induction of muscle proteolysis
observed during the progression of cancer cachexia and
2) to determine if exercise training can attenuate mito-
chondrial dysfunction and the induction of proteolytic
pathways during IL-6 induced cancer cachexia. We
hypothesized the altered expression of muscle proteins
regulating mitochondria biogenesis, fission and fusion
would be regulated by IL-6 in muscle at the onset of
cachexia and precede mitochondrial content loss, which
is most prominent during late stage cachexia. We also
hypothesized that exercise training would suppress IL-6-
induced changes in mitochondria biogenesis, fission and
fusion and, in turn, inhibit the induction of muscle pro-
teolytic activation and muscle wasting.

Methods
Animals
ApcMin/+ mice on a C57Bl/6 background were originally
purchased from Jackson Laboratories (Bar Harbor, ME,
USA) and bred at the University of South Carolina’s ani-
mal resource facility as previously described [23]. ApcMin/+

(n= 21) mice were group housed and were sacrificed at
various time points to provide stratification of body
weight loss to study regulation of muscle mitochondrial
remodeling during the progression of cachexia. The
groups were as follows; weight stable (WS), <5% (initial),
9 to 16% (intermediate) and >20% (severe) cachexia. To
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block the progression of cachexia, a subset of ApcMin/+

mice were treated with an IL-6 receptor antibody (n= 5)
or phosphate-buffered saline (PBS) control (n= 7) at
16 weeks after the onset of cachexia (See procedure
below). Wild-type controls were also treated with the IL-6
receptor antibody (n= 6) or PBS control (n= 6) at
16 weeks. To increase circulating IL-6 levels, wild-type
and ApcMin/+ mice (Control; n = 5 and+ IL-6; n = 6) were
used for IL-6 over-expression experiments (See procedure
below). A subset of wild-type and ApcMin/+ mice were
exercised (See exercise methods) or served as cage con-
trols. The room was maintained on a 12:12 light:dark cycle
with the light period starting at 0700. Mice were provided
standard rodent chow (Harlan Teklad Rodent Diet, #8604,
Madison, WI, USA) and water ad libitum. Body weight
and food intake were measured weekly. All animal experi-
mentation was approved by the University of South Caro-
lina’s Institutional Animal Care and Use Committee.

IL-6 receptor antibody administration
The MR16-1 IL-6 receptor antibody was a generous gift
from Chugai Pharmaceutical Co., LTD, Tokyo, Japan. A
total of 300 μg/mouse of IL-6 receptor antibody was
administered by an intraperitoneal injection every 3 days
for 2 weeks starting at 16 weeks of age. PBS was injected
as a control vehicle.

IL-6 over-expression
In vivo intramuscular electroporation of an IL-6 plasmid
was used to increase circulating IL-6 levels in mice as
previously described [17,24]. The quadricep muscle was
used as a vessel to produce IL-6 and secrete it into cir-
culation, and was not used for any analyses in this study.
The gastrocnemius muscle used in the study was not
subjected to electroporation. Briefly, mice were injected
with 50 μg of the IL-6 plasmid driven by the CMV pro-
moter, or empty control vector, into the quadriceps
muscle. Mice were anesthetized with a 2% mixture of
isoflurane and oxygen (1 L/minute). The leg was shaved,
and a small incision was made over the quadricep
muscle. Fat was dissected away from the muscle, and the
plasmids were injected in a 50-μl volume of PBS. A
series of eight 50 ms, 100 V pulses was used to promote
uptake of the plasmid into myofibers, and then the inci-
sion was closed with a wound clip. Both vector control
and + IL-6 groups received the appropriate plasmid start-
ing at 12 weeks of age. Mice were killed after two weeks
of IL-6 over expression.

Plasma IL-6
Plasma IL-6 levels were measured with a mouse-specific
ELISA (Biosource, Carlsbad, CA, USA) as previously
described [17]. Blood samples were taken under brief
isoflurane anesthesia from the retro-orbital eye sinus
two weeks after electroporation to determine plasma IL-
6 concentrations.

Treadmill protocol
At five weeks of age, mice were grouped into either ex-
ercise (n = 16) or cage control (n = 20) at which time they
started their training as previously described [22].
Briefly, acclimation consisted of running at a 5% grade
for a total of 20 minutes with gradual increase in speed
starting at 10 m/minute and increasing to 18 m/minute.
After the three days of acclimation mice, started on a
training regimen that consisted of a 5-minute warm up
at 10 m/minute at 5% grade followed by 55 minutes of
running at 18 m/minute at 5% grade. Mice were encour-
aged to run by gentle taps. Mice ran six days a week and
were given one day of recovery. After electroporation at
12 weeks, the mice received a two-day break from exer-
cise before starting again. Mice ran until 14 weeks of age
when they were sacrificed.

Tissue collection
Mice were given a subcutaneous injection of ketamine/
xylazine/acepromazine cocktail (1.4 ml/kg BW) before
the gastrocnemius was dissected. The gastrocnemius
muscles were rinsed in PBS, weighed, snap frozen in li-
quid nitrogen, and stored at −80°C until further analysis.

mtDNA PCR
Mitochondrial capacity was performed as previously
described [9]. DNA was isolated using DNAzolW Reagent
(Invitrogen, Carlsbad, CA, USA). Briefly, muscle (20 to
30 mg) was homogenized in 1 ml DNAzol, pelleted with
100% ethanol, and re-suspended in 8 mM NaOH. Quanti-
tative real-time PCR analysis was carried out in 25 μl reac-
tions consisting of 2x SYBR green PCR buffer (AmpliTaq
Gold DNA Polymerase, Buffer, dNTP mix, AmpErase
UNG, MgCl2) (Applied Biosystems, Foster City, CA,
USA), 0.150 μg DNA, DI water, and 60 nM of each pri-
mer. PCR was run with the DNA sample with Cyto-
chrome B Forward, 5′ - ATT CCT TCA TGT CGG ACG
AG −3′; Cytochrome B Reverse, 5′ - ACT GAG AAG
CCC CCT CAA AT - 3′, Gapdh Forward, 5′ - TTG GGT
TGT ACA TCC AAG CA - 3′; Gapdh Reverse, 5′ - CAA
GAA ACA GGG GAG CTG AG - 3′. Samples were ana-
lyzed on an ABI 7300 Sequence Detection System. Reac-
tions were incubated for 2 minutes at 50°C and 10
minutes at 95°C, followed by 40 cycles consisting of a 15-s
denaturing step at 95°C and 1-minute annealing/extend-
ing step at 60°C. Data were analyzed by ABI software (Ap-
plied Biosystems, Foster City, CA, USA). using the cycle
threshold (CT), which is the cycle number at which the
fluorescence emission is midway between detection and
saturation of the reaction. The 2-ΔΔ CT method [25] was
used to determine changes in gene expression between
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Cytochrome B with Gapdh CT as the correction factor.
The ratio between mtDNA and nuclear DNA genes was
normalized to weight stable ApcMin/+ mice and wild-type
PBS treated mice and used as an index of mitochondrial
content. This method has been modified from a previously
used technique to determine mitochondrial content in
muscle [26].

C2C12 cell culture
C2C12 myoblasts purchased from American Type Cul-
ture Collection (Manassas, VA, USA) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM), supple-
mented with 10% FBS, 50 U/ml penicillin and 50 μg/ml
streptomycin (Fisher Scientific, Pittsburg, PA, USA).
Upon reaching confluence, myoblast differentiation was
induced for 72 h in DMEM supplemented with 2% heat-
inactivated horse serum (HIHS), 50U/ml penicillin and
50 μg/ml streptomycin. After 72 h differentiation, IL-6
(Sigma, St. Louis, MO, USA) was added to serum-free
DMEM and incubated for 24 h. Cells were harvested by
washing with ice-cold PBS and then scraped in ice-cold
lysis buffer (50 mM Tris, 150 mM NaCl, 1 mM EDTA,
1% Triton X-100, 0.1% SDS, 0.5% sodium deoxycholate,
5 mM NaF, 1 mM β-glycerolphosphate, 1 mM NaVO3

and 1/200 protease inhibitor cocktail (Sigma, P8340), pH
8.0). After sonication, cell debris was removed by centri-
fugation, and the supernatant was stored at −80°C. Pro-
tein concentrations were measured by the Bradford
assay (Bio-Rad, Hercules, CA, USA) and the samples
were used for Western blot analysis. All cell culture
experiments were run in triplicates and all experiments
were replicated.

Western blotting
Western blot analysis was performed as previously
described [24]. Briefly, frozen gastrocnemius muscle was
homogenized in Mueller buffer and protein concentra-
tion determined by the Bradford method [27]. Crude
muscle homogenate 40 μg was fractionated on 8% to
10% SDS-polyacrylamide gels. Gels were transferred to
PVDF membranes overnight. Membranes were Ponceau
stained to verify equal loading of each gel. Membranes
were blocked overnight in 5% milk in Tris-buffered sa-
line with 0.1% Tween-20 (TBS-T). Primary antibodies
for CoxIV, Cytochrome C, Atg5, Beclin-1, LC3β,
GAPDH and FoxO (Cell Signaling, Danvers, MA, USA),
Mfn1, Mfn2 (Novus Biologicals, Littleton, CO, USA),
Fis1 (Sigma), PGC-1α (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), p-FoxO (Millipore, Billerica, MA,
USA) and 4-hydroxynonenal (alpha diagnostics) were
diluted 1:1,000 to 1:500 in 5% milk in TBS-T followed by
1 h incubation with membranes at room temperature.
Anti-rabbit or mouse IgG horseradish-peroxidase conju-
gated secondary antibodies (Cell Signaling, Danvers,
MA, USA) were incubated with the membranes at
1:2,000 dilutions for 1 h in 5% milk in TBS-T. Enhanced
chemiluminescence (ECL) (GE Healthcare Life Sciences,
Piscataway, NJ, USA) was used to visualize the antibody-
antigen interactions. Images were digitally scanned and
blots were quantified by densitometry using scientific
imaging software (Scion Image, Frederick, MD, USA).

RNA isolation, cDNA synthesis, and real time PCR
RNA isolation, cDNA synthesis and real-time PCR were
performed as previously described [28], using reagents
from Applied Biosystems (Foster City, CA, USA). Fluor-
escence labeled probes for C2 proteasomal subunt, C7
proteasomal subunit, atrogin-1, Bax (FAM dye) and the
ribosomal RNA 18 s (VIC dye) were purchased from
Applied Biosystems and quantified with TaqMan Univer-
sal mastermix (Applied Biosystems, Foster City, CA,
USA) PGC-1 (forward- 5′ AAGACGGATTGCCCT-
CATTT 3′, reverse 5′ AGTGCTAAGACCGCTGCATT
3′) and GAPDH primers were purchased from IDT
(Coralville, Iowa, USA) and run using SYBR green PCR
buffer. Data were analyzed by ABI software using the
cycle threshold (CT), which is the cycle number at which
the fluorescence emission is midway between detection
and saturation of the reaction.

Transmission electron microscopy
Samples of red quadriceps muscle were fixed in 2.5%
glutaraldehyde and prepared as previously described
[29]. Mitochondrial size was determined by tracing the
outline of mitochondria at 15,000X magnification using
Image J software (NIH, Bethesda, MA, USA).

Statistical analysis
A one-way ANOVA was used to determine differences
between ApcMin/+ mice separated by percentage body
weight loss and all cell culture experiments. A two-way
ANOVA was used to determine differences among vari-
ables in the IL-6 receptor antibody and exercise experi-
ments. Post-hoc analyses were performed with Student
Newman-Keuls methods. Significance was set at P
<0.05.

Results
Mitochondrial loss during severe cachexia is associated
with a reduction in biogenesis and alterations in fission/
fusion dynamics. ApcMin/+ mice were sacrificed between
14 and 20 weeks of age and then categorized as having
no weight loss (weight stable), ≤5% body weight loss
(initial), 6 to 19% weight loss (intermediate) and >20%
loss (severe). While muscle mitochondria content was
not different between weight stable mice and those exhi-
biting initial body weight loss, there was a 45% reduction
(P = 0.03, Figure 1A) during intermediate body weight
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loss and a further reduction (63%; P = 0.005) with severe
weight loss. Mitochondrial protein expression mirrored
mitochondria content, with cytochrome C and Cox IV
protein expression being reduced by 43% (P = 0.002;
Figure 1C) and 21% (P = 0.002; Figure 1D) with inter-
mediate weight loss and having expression of both pro-
teins further reduced with severe weight loss. PGC-1α, a
Figure 1 Mitochondrial content, biogenesis and morphology are alter
grouped by percentage of body weight loss to study muscle oxidative cap
determined by the mitochondrial:nuclear DNA ratio. B) Representative Wes
throughout the progression of cachexia. C) Cytochrome C, D) CoxIV and E)
Representative EM images of intramuscular mitochondria in F) wild-type, G
cachexia. I) Mitochondrial size and J) mitochondrial size distribution. Values
from weight stable groups. $ Signifies difference from mice with 6 to 19%
marker of mitochondrial biogenesis was reduced 53%
(P= 0.003; Figure 1E) during intermediate stage cachexia
and reduced further with the progression to severe body
with loss (P= 0.002). The changes in mitochondrial pro-
tein expression and protein expression related to fission/
fusion are associated with altered mitochondrial morph-
ology in skeletal muscle. Electron microscopy images of
ed during the progression of cachexia. ApcMin/+ mice were
acity during the progression of cachexia. A) Mitochondrial content as
tern blot of cytochrome C, CoxIV and PGC-1α protein expression
PGC-1α protein expression normalized to weight stable mice.
) ApcMin/+ mice with mild cachexia and H) ApcMin/+ mice with severe
are means ± SE. Significance was set at P <0.05. † Signifies different
body weight loss. WS, weight stable.
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skeletal muscle from wild-type (Figure 1F), weight stable
ApcMin/+ mice (Figure 1G) and severely cachectic ApcMin/+

mice (Figure 1H). Mitochondrial size was reduced in
weight stable ApcMin/+ mice compared to wild-type mice
(Figure 1I). Mitochondrial size in cachectic ApcMin/+ mice
was highly variable; however, when plotted as percentage
mitochondrial size distribution there was a shift towards
smaller mitochondria (Figure 1J) in cachectic ApcMin/+

mice when compared to weight stable ApcMin/+ mice and
wild-type mice.
Mitochondrial fission/fusion proteins are differentially

expressed during the progression of cachexia. Contrast-
ing with muscle mitochondria content, the expression of
mitofusin 1 (Mfn1) and Mfn2 proteins were reduced 22
and 31% (P = 0.04; Figure 2B, C) with the initiation of
weight loss. With the progression of weight loss, muscle
MFN1 and MFN2 expression was further reduced. There
was no change in mitochondrial fission protein (FIS1)
expression between weight stable mice and those having
initial body weight loss, but FIS1 expression was strongly
induced 2.5-fold (P = 0.002; Figure 2D) with the progres-
sion of body weight loss. Pro-apoptotic Bax mRNA
Figure 2 Mitochondrial dynamics are altered during the progression
protein expression during the progression of cachexia. B) Mfn1, C) Mfn2 an
mRNA expression normalized to weight stable mice. Values are means ± SE
groups. & Signifies the difference from mice with ≤5% body weight loss. $
WS, weight stable.
expression was increased in ApcMin/+ mice with inter-
mediate and severe body weight loss when compared to
weight stable ApcMin/+ mice while no differences were
detected in ApcMin/+ mice showing initial body weight
loss (Figure 2E).
IL-6 inhibition attenuated mitochondrial loss in ApcMin/+

mice that have initiated body weight loss. We have previ-
ously reported inhibition of IL-6 signaling can attenuate
the progression of cachexia and subsequent loss of muscle
mass [1]. Here we show that the preservation of muscle
mass is associated with the maintenance of mitochondrial
biogenesis and dynamics. Control ApcMin/+ mice treated
with PBS had a 59% reduction in mitochondrial content
(P=0.01; Figure 3A) and a reduction in cytochrome C and
Cox IV and protein expression (P= 0.003; Figure 3C, D)
when compared to wild-type controls, respectively. Inhib-
ition of systemic IL-6 signaling by an IL-6 receptor anti-
body for two weeks attenuated the loss of mitochondrial
content and repressed expression of mitochondrial pro-
teins (Figure 3A, C, D). However, mitochondrial content
and protein expression remained reduced compared to
wild-type controls. Furthermore, IL-6 receptor antibody
of cachexia. A) Representative Western blot of Mfn1, Mfn2 and FIS1
d D) FIS1 protein expression normalized to weight stable mice. E) Bax
. Significance was set at P <0.05. † Signifies the difference from WS
Signifies the difference from mice with 6 to 19% body weight loss.



Figure 3 IL-6 inhibition attenuates the loss in mitochondrial content and biogenesis in the ApcMin/+ mouse. Wild-type and ApcMin/+ mice
were treated with an IL-6 receptor antibody for two weeks to inhibit IL-6 signaling. A) Mitochondrial content as determined by the mitochondrial:
nuclear DNA ratio. B) Representative Western blot of Cytochrome C, Cox IV and PGC-1α protein in wild-type and ApcMin/+ mice treated with an
IL-6 receptor antibody or PBS control. C) Cytochrome C, D) CoxIV and E) PGC-1α protein expression normalized to wild-type PBS control mice.
Values are means ± SE. Significance was set at P <0.05. *Signifies the difference within treatment. † Signifies the difference within genotype.
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treatment attenuated the reduction in PGC-1α protein ex-
pression (P=0.002; Figure 3E).
IL-6 inhibition attenuates the loss of mitochondrial fu-

sion and prevents the expression of fission protein expres-
sion. Mfn2 protein expression was reduced 39% (P<0.001;
Figure 4B) in PBS treated ApcMin/+ mice when compared
to wild-type controls. IL-6 receptor antibody treatment
increased Mfn2 expression in ApcMin/+ mice (Figure 4B),
but not to wild-type levels. FIS1 protein expression was
induced 2-fold (P <0.001; Figure 4C) in PBS treated
ApcMin/+ mice and this induction was prevented by IL-6r
antibody administration. The IL-6r receptor antibody did
not alter muscle Mfn2 or FIS1 expression in wild-type mice.
Bax mRNA expression was increased two-fold in PBS trea-
ted ApcMin/+ mice (Figure 4D) which was reduced 33%
(P=0.02) with IL-6 receptor antibody treatment.
IL-6-induced muscle wasting and associated altera-

tions in mitochondrial dynamics are rescued with



Figure 4 IL-6 inhibition restores mitochondrial dynamics and
reduces apoptosis in the ApcMin/+ mouse. A) Representative
Western blot of Mfn2 and FIS1 protein expression in wild-type and
ApcMin/+ mice treated with an IL-6 receptor antibody or PBS control.
B) Mfn2 and C) FIS1 protein expression normalized to PBS treated
wild-type mice. D) Bax mRNA expression normalized to PBS treated
wild-type mice. Values are means ± SE. Significance was set at P <

0.05. * Signifies the difference within treatment. † Signifies the
difference within genotype.
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exercise training. Two weeks of IL-6 over-expression
reduced gastrocnemius muscle mass by 12%, which was
prevented when mice were exercise training during IL-6
over-expression (Figure 5A). Systemic IL-6 over-
expression was not sufficient to alter mitochondrial pro-
tein expression in the gastrocnemius of ApcMin/+ mice
initiating cachexia (Figure 5C, D). However, IL-6 over-
expression decreased PGC-1α protein expression 56%
(Figure 5E) in ApcMin/+ mice. In contrast, IL-6 over-
expression did not decrease PGC-1α protein expression
in exercise trained ApcMin/+ mice. Lastly, IL-6 over-
expression or exercise training did not affect muscle oxi-
dative damage as represented by quantification of 4-
hydroxynonenal (4HNE)-modified proteins (Figure 5F).
Exercise training improves IL-6 induced alterations in

mitochondrial dynamic and apoptosis. Exercise is a po-
tent method to increase oxidative capacity in skeletal
muscle [7], and we have recently shown exercise can
counteract muscle loss during IL-6-induced cachexia
[22]. IL-6 over-expression decreased mitochondrial fu-
sion proteins Mfn1 and Mfn2 57% and 42%, respectively
(Figure 6B, C). Exercise was able to increase fusion pro-
tein expression by roughly two-fold despite IL-6 over-
expression. Mitochondrial fission protein FIS1 was
increased 81% with IL-6 over-expression which was pre-
vented by exercise (Figure 6D). Phosphorylation of
FoxO, a potent regulator of muscle proteolysis was
decreased 44% (P = 0.003; Figure 6E) indicating increased
transcriptional activation with IL-6 over-expression. Ex-
ercise training prevented the reduction in FoxO phos-
phorylation independent of circulation IL-6 levels. Bax
mRNA expression was increased roughly two-fold
(Figure 6F) with IL-6 over-expression which was also
prevented by exercise training.
IL-6 over-expression in ApcMin/+ mice increased

muscle proteolysis through both ubiquitin dependent
and autophagy related pathways. Autophagy related pro-
tein expression was increased with IL-6 over-expression
as Atg5, Beclin-1 and LC3β were increased by 76%, 74%
and 62% (P <0.05; Figure 7B, C, D) respectively. Exercise
training prevented the induction of Atg5 and Beclin-1
and attenuated the induction of LC3β by 28%
(P = 0.008). IL-6 over-expression induced gene expres-
sion related to the ubiquitin proteasomal pathway as
well. The muscle specific E3 ligase, Atrogin-1 mRNA ex-
pression was induced by two-fold (Figure 7E) while
mRNA expression of proteasomal subunits C2 (Figure 7F)
and C7 (Figure 7G) were increased roughly two-fold. Ex-
ercise training attenuated gene expression related to ubi-
quitin dependent proteolysis.
IL-6 treatment to C2C12 myotubes induces Fis1 and

oxidative damage independent of changes in PGC-1α
and mitochondrial proteins. C2C12 myotubes were trea-
ted with 0 ng/ml IL-6 (Control), 20 ng/ml (low) and
100 ng/ml (high). A total of 100 ng/ml of IL-6 induced
Fis1 protein expression 64% (P = 0.02; Figure 8B) when
compared to control while no change in Fis1 expression
was detected in the low dose of IL-6. The low dose of
IL-6 trended (P = 0.07) to decrease PGC-1α mRNA ex-
pression while the high IL-6 dose decreased PGC-1α



Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 IL-6 over-expression induced muscle wasting and reduced PGC-1α which are rescued with exercise training. ApcMin/+ mice
underwent 12 weeks of moderate exercise training or served as sedentary cage controls and over-expressed circulating IL-6 or received a control
vector. A) Gastrocnemius muscle mass. B) Representative Western blot of cytochrome C, CoxIV and PGC-1α protein in the gastrocnemius of
ApcMin/+ mice. C) Cytochrome C, D) CoxIV and E) PGC-1α protein expression normalized to sedentary mice treated with the control vector.
F) Upper - representative Western blot of 4-hydroxynonenal (4HNE)-modified proteins; lower - 4HNE-modified protein expression normalized to
sedentary control mice. Values are means ± SE. Significance was set at P <0.05. CC, cage control; ME, main effect;. Wt, wild-type. * Signifies the
difference from cage control vector mice.
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mRNA expression by roughly 80% (P <0.001; Figure 8E)
without any changes in mitochondrial proteins cyto-
chrome C (Figure 8C) and Cox IV (Figure 8D). 4HNE
modified proteins were increased 43% (P=0.04; Figure 8F)
with the high dose of IL-6 when compared to control. The
low dose of IL-6 did not affect 4HNE modified proteins in
C2C12 myotubes.

Discussion
Skeletal muscle mitochondria have emerged as a critical
regulator of muscle protein turnover [5]. Both mito-
chondrial loss and altered fission/fusion regulation are
associated with muscle wasting [30-32]. Related to these
processes are induction of reactive oxygen species, apop-
tosis and activation of the ubiquitin and autophagy
dependent proteolysis [5]. We have previously shown a
reduction in muscle oxidative capacity and altered mito-
chondrial dynamics in both oxidative and glycolytic
muscle in severely cachectic ApcMin/+ mice [9]. In
addition, we have recently reported the induction of
both ubiquitin and autophagy related muscle protein
degradation during the progression of cachexia [1]. Here
we report the novel finding that the expression of pro-
teins regulating mitochondrial biogenesis and mitochon-
drial dynamics are disrupted early in the development of
cachexia and precede a reduction in mitochondria con-
tent. Further, alterations in the expression of these pro-
teins can be suppressed by the administration of an IL-
6r antibody after the initiation of cachexia. We also re-
port that exercise training can improve the expression of
proteins regulating mitochondrial biogenesis and dy-
namics, which is associated with the attenuation of
muscle protein degradation even when systemic IL-6
levels are comparable to what is typically observed dur-
ing severe cachexia. Lastly, we show IL-6 treatment to
C2C12 myotubes induced FIS1 expression and oxidative
damage without changes in oxidative protein expression.
While we previously reported a reduction in mito-

chondrial content and protein expression in severely
cachectic ApcMin/+ mice [9], that study was not able to
examine changes during the progression of the disease.
Our current study expanded on these prior findings by
stratifying ApcMin/+ mice into groups of incremental
weight loss. We report that the loss of muscle mitochon-
dria is not necessary for the significant amount of
muscle mass loss (approximately 20%) that occurs at the
onset of cachexia. However, there was an incremental
loss of skeletal muscle mitochondria with further pro-
gression of cachexia, which coincides with the induction
of apoptosis in the muscle [10], and the induction of
proteins regulating autophagy [1]. We report the novel
finding that muscle mitochondrial morphology is altered
during the initiation and progression of cancer cachexia.
Late stage cachexia in ApcMin/+ mice is also associated
with a surge in circulating IL-6 and a reduction in vol-
itional physical activity [12]. While our current study
reports that two weeks of elevated circulating IL-6 was
not sufficient to reduce muscle mitochondrial content,
the IL-6r antibody treatment after the initiation of cach-
exia was able to significantly attenuate the loss of mito-
chondria. Skeletal muscle mitochondrial content retains
plasticity related to the amount of contractile activity
being performed by the muscle [33]. Here we also show
that exercise training prior to and during over-
expression of IL-6 in the ApcMin/+ mouse could not only
prevent the suppression of mitochondrial biogenesis, but
increase oxidative protein expression above control
values regardless of cachectic stimuli. Further work is
needed to understand the association between sedentary
behavior and chronically high IL-6 levels, which are
characteristics of late stage cachexia, on the processes
regulating mitochondria loss during the progression of
cachexia.
The suppression of mitochondria biogenesis during the

initiation of cachexia could be a critical early event that
leads to mitochondrial dysfunction and loss in later stages
of the disease. Interestingly, the reduction in mTOR sig-
naling, and specifically the mTORC1 complex, in cachec-
tic muscle may impact mitochondrial content through the
repressed transcription of genes involved in oxidative me-
tabolism. The mTORC1 complex can act with PGC-1α to
activate transcription of oxidative genes [34], and muscle
mitochondria content is severely reduced in mice with a
muscle specific RAPTOR knockout, which disrupts the
formation of the mTORC1 complex [35]. We have
reported the phosphorylation of RAPTOR, which
decreases mTORC1 activation, is increased during the
progression of cachexia in the ApcMin/+ mouse [1]. PGC-
1α has a well-documented role in the regulation of skeletal
muscle oxidative capacity [36,37] and, recently, it has been



Figure 6 Exercise training reduces IL-6 induced alterations in mitochondria dynamics, apoptosis and FoxO phosphorylation.
A) Representative Western blot of Mfn1, Mfn2 and FIS1 protein in the gastrocnemius of ApcMin/+ mice. B) Mfn1, C) Mfn2 and D) FIS1 protein
expression normalized to sedentary mice treated with the control vector. E) upper - Representative Western blot of total and phosphorylated
FoxO proteins; lower - ratio of phosphorylated to total FoxO protein expression normalized to cage control mice. F) Bax mRNA expression. Data
are normalized to cage control mice. Values are means ± SE. Significance was set at P <0.05. CC, cage control; ME, main effect; Wt, wild-type.
*Signifies the difference from cage control vector mice.
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shown to be involved with numerous cellular processes in-
cluding protein degradation [38], mTOR activity [34],
apoptosis [39] and regulation of ROS [40]. A reduction in
PGC-1α expression has been previously shown in several
wasting diseases [41-45], including cachexia [9]. The re-
duction in muscle PGC-1α expression coincided with cir-
culating IL-6 levels, being repressed by IL-6 over-
expression before a reduction in oxidative capacity, and
being further reduced with the progression of cachexia.
Additionally, the administration of the IL-6r antibody atte-
nuated the loss in PGC-1α expression and exercise served
to induce PGC-1α expression in muscle that demon-
strated an attenuated catabolic response related to muscle
wasting. Furthermore, we report IL-6 can have a direct



Figure 7 Autophagy and ubiquitin dependent proteolysis are induced with IL-6 over-expression and attenuated with exercise training.
A) Representative Western blot of Atg5, Beclin1 and LC3β protein in the gastrocnemius of ApcMin/+ mice. B) Atg5, C) Beclin1 and D) LC3β protein
expression normalized to sedentary cage control mice. E) Atrogin1 mRNA. F) C2 and G) C7 proteasomal subunit mRNA. Data are normalized to
cage control groups for wild-type and ApcMin/+ mice. Values are means ± SE. Significance was set at P <0.05. *Signifies the difference from cage
control vector mice. † Signifies the difference within IL-6 treatment.
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effect on mitochondria biogenesis as C2C12 myotubes
treated with IL-6 resulted in a reduction in PGC-1α
mRNA expression. Therefore, induction of mitochondrial
biogenesis during the initiation of cachexia may be an ex-
cellent target for therapeutic intervention during the initi-
ation of cachexia.
The coordination of mitochondrial fission and fusion,

referred to as mitochondrial dynamics, have been re-
cently identified as critical components of mitochondrial
function, morphology and distribution [6,46]. Fusion
proteins Mfn1 and Mfn2 can promote mitochondrial
elongation and activity, and regulate mitochondrial
membrane potential and glucose oxidation in cultured
cells [47]. We report that the expression of both Mfn1
and Mfn2 proteins are repressed during pre-cachexia,
and this is one of the earliest alterations in protein ex-
pression related to oxidative metabolism we have found
in skeletal muscle. There is a further reduction in Mfn1
and Mfn2 protein expression as cachexia progresses.
Mitochondrial fusion protein expression appears to be
IL-6 sensitive. It has been previously shown that IL-6
treatment to muscle cells reduced mitochondrial fusion
protein Mfn2 gene expression [17]. In the current re-
port, IL-6 over- expression repressed expression and IL-



Figure 8 IL-6 treatment on C2C12 myotubes induces FIS1 expression and a reduction in PGC-1α mRNA. A) Representative Western blot of
FIS1, Cytochrome C and CoxIV protein in C2C12 myotubes treated with 0, 20 and 100 ng/ml of IL-6. B) FIS1, C) Cytochrome C and D) CoxIV C
protein expression and PGC-1α mRNA E) expression normalized to C2C12 myoblasts treated with vehicle control (0 ng/ml IL-6). Values are
means ± SE. Significance was set at P <0.05. *Signifies the difference from 0 ng/ml control.
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6r antibody administration increased expression of
Mfn2. Interestingly, exercise was able to increase both
Mfn1 and Mfn2 expression regardless of IL-6 levels.
PGC-1α and PGC-1β can regulate Mfn2 gene expression
in conjunction with the estrogen-related receptor-α
[3,48]. A reduction in Mfn2 has been observed in muscle
from type 2 diabetic [17,49] and obese patients [17].
However, patients with chronic heart failure and weight
loss did not show a change in muscle Mfn2 indicating
the role of Mfn2 in muscle wasting may be different de-
pending on disease type and severity [50].
Related to the regulation of mitochondrial fission, our

data show an increase in muscle FIS1 protein expression
in the later stages of cachexia, which could also be
induced by systemic over-expression of IL-6. Further-
more, we are the first to show that FIS1 gene expression
in C2C12 myotubes is increased when treated with IL-6.
The role of FIS1 during wasting diseases is currently un-
known, but FIS1 over-expression is pro- apoptotic in
skeletal muscle [51-53] and is associated with the pro-
duction of reactive oxygen species [5] and activation of
muscle protein degradation [32]. Muscle apoptosis is
commonly observed during cancer cachexia [10,54,55].
We have previously shown the induction of apoptosis in
muscle from severely cachectic ApcMin/+ mice while no
evidence of apoptosis was observed in moderately cach-
ectic ApcMin/+ mice [10]. Here we show FIS1 was only
increased during later stages of cachexia, which coin-
cided with the induction of pro-apoptotic Bax mRNA
expression, which further suggests an association be-
tween mitochondrial fission and apoptosis. Furthermore,
exercise training was able to reduce fission protein and
Bax mRNA expression. To determine whether the
exercise-induced suppression of fission and apoptosis
coincided with inhibition in muscle degradation, we
measured markers of autophagy and ubiquitin dependent
proteolysis. We report exercise was able to attenuate acti-
vation of FoxO and pathways related to both autophagy
and the ubiquitin proteasomal system. This effect was
similar to what was observed by Romanello et al. when
they showed inhibition of mitochondrial fission prevented
muscle wasting induced by starvation or FoxO over-
expression [32]. Together, these findings suggest improve-
ments in mitochondrial dynamics could be a target for
exercise-induced protection from muscle protein degrad-
ation and eventual muscle wasting.
The production of reactive oxygen species is associated

with mitochondrial remodeling and activation of proteo-
lytic pathways during muscle wasting [5]. The role of re-
active oxygen species during muscle wasting in ApcMin/+

mice is still unclear. We previously reported no changes in
muscle oxidative damage during cachexia in the ApcMin/+

mouse [9] and currently show no changes in oxidative
damage with systemic IL-6 over-expression. However, IL-6
treatment on C2C12 myotubes increased indices of react-
ive oxygen species. Further investigation is needed to de-
termine the role of ROS production in regulating muscle
wasting during cachexia.

Conclusions
In summary, we show the reduction in mitochondrial con-
tent during the progression of cachexia in the ApcMin/+

mice occurs during later stages of body weight loss. The
loss of mitochondria is preceded by the reduction in
PGC-1α and mitochondrial fusion proteins Mfn1 and 2
during the initial stages of cachexia, while the induction of
fission protein FIS1 occurs with the progression of cach-
exia. In this study, we used an IL-6 receptor antibody to
inhibit IL-6 signaling after the initiation of cachexia, used
systemic IL-6 over-expression to initiate cachexia, and also
examined the effect of exercise to improve muscle mito-
chondrial function during IL-6 induced cachexia. Lastly,
C2C12 myoblasts were treated with IL-6 to determine dir-
ect effects of IL-6 on mitochondrial remodeling/function.
We have shown IL-6 inhibition and exercise training can
prevent the progression of cachexia in ApcMin/+ mice.
Here, we show both therapies can prevent the loss of
mitochondrial content by preserving PGC-1α and fusion
protein expression, while preventing the increase in fission
protein expression. These changes were associated with a
reduction in muscle wasting and pathways related to
muscle protein degradation. Our in vitro data extended
our finding by showing IL-6 can directly increase FIS1 ex-
pression in muscle cells. Further research needs to exam-
ine if therapies to maintain muscle oxidative capacity are
most effective when administered before significant body
weight loss develops. The findings of this study enhance
our understanding of the interactions between muscle oxi-
dative capacity and the regulation of muscle mass during
cachexia, thus, providing further rationale to explore the
interconnection between oxidative capacity and its role in
regulating muscle mass during wasting diseases.
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