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Abstract 

Background The functional and metabolic properties of skeletal muscles are partly a function of the spatial arrange-
ment of fibers across the muscle belly. Many muscles feature a non-uniform spatial pattern of fiber types, and altera-
tions to the arrangement can reflect age or disease and correlate with changes in muscle mass and strength. Despite 
the significance of this event, descriptions of spatial fiber-type distributions across a muscle section are mainly 
provided qualitatively, by eye. Whilst several quantitative methods have been proposed, difficulties in implementation 
have meant that robust statistical analysis of fiber type distributions has not yielded new insight into the biological 
processes that drive the age- or disease-related changes in fiber type distributions.

Methods We review currently available approaches for analysis of data reporting fast/slow fiber type distributions 
on muscle sections before proposing a new method based on a generalized additive model. We compare current 
approaches with our new method by analysis of sections of three mouse soleus muscles that exhibit visibly different 
spatial fiber patterns, and we also apply our model to a dataset representing the fiber type proportions and distribu-
tions of the mouse tibialis anterior.

Results We highlight how current methods can lead to differing interpretations when applied to the same dataset 
and demonstrate how our new method is the first to permit location-based estimation of fiber-type probabilities, in 
turn enabling useful graphical representation.

Conclusions We present an open-access online application that implements current methods as well as our new 
method and which aids the interpretation of a variety of statistical tools for the spatial analysis of muscle fiber 
distributions.

Keywords Skeletal muscle, Fiber type, Clumping, Aging, Neuromuscular disease, Pattern, Spatial distribution, 
Statistical methods

Background
Skeletal muscles are complex structures with substantial 
location- and usage-related variability in fiber number, 
diameter, length, and arrangement [1]. Fibers are also 
classified by their contractile and metabolic properties 
into one of four primary fiber type groupings, one of 
which is classified as “slow” whilst the others are “fast” 
subtypes [2], though all fiber subtypes are not necessar-
ily present in all muscles [3]. Despite their structural and 
functional complexity, the arrangement of fibers within 
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any given skeletal muscle is strikingly similar amongst the 
normal individuals of any species [3], and this arrange-
ment is thought to arise as a consequence of signals 
received from the motor nerve terminal [2].

Muscle is “plastic,” in the sense that any fiber’s func-
tional and metabolic properties may change in response 
to altered usage pattern or innervation status, as has been 
demonstrated many times by experimental interven-
tions involving cross-reinnervation or externally imposed 
usage patterns [4]. Alteration of fiber type profiles also 
changes with age and with neuromuscular pathologies 
[5, 6], likely reflecting an age- or disease-related change 
in usage pattern or innervation status; these phenotypic 
changes are often accompanied by a reduction in muscle 
mass and strength and are characterized by the emer-
gence of apparent fiber type clusters in which the group-
ing and proportion of slower fiber types increases [5].

The strong control over muscle fiber type exerted by 
the motor nerve is a compelling reason to use the spatial 
distribution of fiber types as an indicator of pathologi-
cal processes integral to neuromuscular aging or disease. 
Our understanding of these processes would be greatly 
enhanced if we were able to identify whether they fol-
lowed any particular pattern or exhibited objectively 
identifiable spatial behaviors. Many muscles have stere-
otypical distributions of fast and slow fibers throughout 
[3], so a change in this pattern has the potential to pro-
vide new insight into the primary causes of the change. 
For example, an age-related faster-to-slower fiber type 
switch and apparent clustering might reflect a process in 
which motor neurons projecting to fast fibers die earlier 
in normal aging than those projecting to slow fibers [6]. 
In addition, if the fiber type switching process occurred 
across the muscle with a non-random pattern, it might 
indicate that the death of motor neurons is related, at 
least in part, to the location of their terminals in the 
periphery. A similar proposal could be raised to explain 
any consistent emergent pattern change in neuromus-
cular disease. To this end, we need accurate quantitative 
methods for describing the distribution of fiber types 
across muscle sections.

In studies that feature microscopic imaging of muscle 
sections, interpretations as to the spatial configurations 
of fast and slow fibers are often based on subjective vis-
ual inspection [7], an approach with obvious drawbacks. 
Statistical approaches provide more objective options to 
undertake research addressing basic biological principles, 
including how skeletal muscle changes as we age, and 
how neuromuscular pathologies manifest and progress. 
Continuing with an age-related example, a better under-
standing of the cellular changes that drive neuromuscular 
deterioration in normal aging will support the develop-
ment of evidence-based therapies to slow the process and 

thereby to help people retain their independence further 
into their old age.

The problems associated with subjective visual apprais-
als of muscle fiber-type distributions and the appeal of 
targeted statistical methods were raised 40 years ago [8] 
and subsequently included a consideration of the geo-
metric methods used in processing the data sets [9, 10], 
novel statistical tests designed to seek evidence against 
a null hypothesis of a completely random distribution 
[11–13], and moving toward the use of formal modeling 
techniques to more precisely describe the spatial configu-
rations of dichotomized muscle fiber data [14–16]. There 
are also more recent examples of approaches to quan-
tify spatial relationships in muscle fiber cross-sections 
[17–20]. Despite the attempts of several authors to raise 
the issue for discussion and propose their own analytical 
solutions, the specialized nature of the statistical meth-
odology has meant that routine applications of these 
methods are few.

The objectives of this work are threefold. First, we 
review some of the historically proposed methods refer-
enced above, omitting technical detail in favor of a focus 
on application and interpretation. Second, we suggest 
and demonstrate the application of modern statistical 
techniques that have not been previously considered in 
this context. These approaches are capable of offering 
greater insight into the spatial structure of binary fiber-
type data and can be easily extended to cases where 
there are more than two fiber types—thereby aiming to 
highlight the utility with which readily available statisti-
cal tools can serve relevant research pursuits. Finally, 
we seek to improve accessibility to these analytical tech-
niques by introducing a freely available web-based appli-
cation in which the user can upload their own data to 
obtain summaries from a variety of statistical approaches 
via a point-and-click interface.

Methods
Motivating examples and data processing
To facilitate the ensuing discussion, we consider three 
example data sets (Fig.  1). These specimens represent 
cross-sections of the soleus muscles of three different 
mice, sections having been histochemically stained to 
identify fast fibers. The mouse soleus comprises primar-
ily a mix of type I and type IIA fibers, so treatment of the 
data as a set of binary indicators is appropriate in this 
case. A casual visual inspection of the leftmost muscle 
suggests an area in the top left of the section with mainly 
slow fibers, and the bottom left has mainly fast fibers, but 
the rest of the section has no obvious patterns or clus-
tering. The center example appears to have a higher pro-
portion of slow fibers near the center of the section, with 
the fast fibers mostly grouped together around the edges. 
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The rightmost specimen has an even distribution of both 
types across the whole section, with very little visually 
obvious grouping together of fibers of the same type.

In experimental settings, stained muscle sections are 
typically photographed through a microscope and digi-
tally processed. The data required for statistical analysis 
are two-dimensional coordinates— x, y —that provide 
the centroid of each fiber, along with the classified fiber 
type. Using this information, standard geometric meth-
ods are used to derive a polygon approximating the over-
all shape of the muscle and to identify spatial neighbors 
of each fiber—yielding a “neighbor network”. Figure  1 
shows two different ways of visualizing the result using 
our three example sections: a tessellation and a triangu-
lation. The latter is preferable if explicit visualization of 
the neighbor network is desired. Additional details on the 
geometric techniques mentioned here appear in the sup-
plementary materials.

Summary‑ and test‑based methods
Here, we briefly review three existing methods developed 
as simple summaries and hypothesis tests for binary (i.e., 
fast/slow) muscle fiber data. While fast and convenient, 
they are focused on answering “global” questions related 
to type-specific randomness (or lack thereof ) across the 
entire sample.

Mean cluster size
One of the first targeted statistical tests involved the 
analysis of the size of clusters of like-type fibers. Howel 

and Brunsdon [11] considered a null hypothesis of ran-
dom scattering of a chosen fiber type across the muscle 
section. They implemented an iterative search algorithm 
to establish the mean cluster size (where “cluster” is sim-
ply defined as a contiguous group of like-type fibers) of 
the less prevalent fiber type. This statistic is compared 
against a 95% permutation envelope, empirically derived 
assuming randomness. If the mean cluster size for the 
fiber type of interest is abnormally large or small, this 
suggests that fibers tend to “attract” or “repel,” respec-
tively, others of the same type. Exceedance by the test sta-
tistic of the permutation envelope on either side suggests 
statistically significant evidence against randomness. 
This approach is assumed reliable when the less preva-
lent fiber type makes up less than 30% of the fibers in the 
sample, which may not always be the case in practice.

Unlike neighbor pairs
A hypothesis test of a similar nature was developed by 
Venema [13]. He suggested using the number of unlike 
neighbor pairs as a test statistic. The rationale is that a 
section where the arrangement of the two fiber types is 
random should have a mix of pairs of neighbors of both 
slow, both fast, and one of each type. Strong like-type 
clustering in the section would result in fibers tending 
to appear beside other fibers of the same type, so there 
would be more pairs of neighboring fibers of the same 
type and hence fewer unlike neighbor pairs.

Venema [13] demonstrated the calculation of the 
mean and variance of the number of unlike neighbor 

Fig. 1 Digitized, geometrically treated versions of the three example sections, shown as tessellations (top row) or triangulations (bottom row)
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pairs under a null hypothesis of randomness. Using the 
observed number of unlike neighbor pairs to this distri-
bution, a test statistic can be found that is negative when 
the sample specimen exhibits like-type clustering and 
positive for like-type segregation. A p value can then be 
calculated to determine the statistical significance of any 
departure from randomness.

Abnormally grouped fibers
A more recent approach [18] involves calculating the 
proportion of “abnormally grouped” slow fibers as a 
descriptive statistic. Under the assumption of a random 
distribution, for each slow fiber, we calculate the mean 
and standard deviation for the number of other slow-type 
neighbors. If there are at least two neighboring fibers in a 
cluster where the number of other slow fibers neighbor-
ing each of these exceeds one standard deviation above 
the mean, all fibers in that cluster are subjectively classi-
fied as abnormally grouped.

Unlike the other methods described above, these pro-
portions do not represent a formal statistical test and 
hence cannot be usefully interpreted in terms of whether 
the distribution is random, but are instead designed to be 
compared between different categories of sections with 
similar overall type-specific proportions in order to sum-
marize differences in like-type behavior between groups. 
The authors of this approach observed heightened slow 
fiber grouping in older human muscles (60–75  years) 
compared to younger muscles (20–35  years). Unfortu-
nately, the statistic is highly sensitive to the overall pro-
portion of slow fibers since a higher proportion of slow 
fibers naturally leads to larger clusters. As such, only 
muscles with similar proportions of slow fibers should 
be compared using this statistic. See the supplementary 
material for further elucidation.

Model‑ and smoothing‑based methods
Useful though they are, test-based methods like those dis-
cussed above have limited inferential scope. For example, 
hypothesis tests are not able to provide readily interpret-
able measures of strength or magnitude of any like-type 
behavior (merely answering a “yes/no” question of spa-
tial randomness), nor are they able to offer insight into 
specific spatial structure (i.e., in terms of where in a given 
section like-type fibers might be more likely to cluster). 
For these types of questions, we need more sophisticated 
methods. Fortunately, there are statistical tools that lend 
themselves well to such analyses and we will review them 
here in the context of binary muscle fiber data.

Binary Markov random field
Venema [15, 16] was the first to suggest a model-based 
approach to the analysis of binary-valued muscle fiber 

data. His main proposal was to consider the two types 
of fibers as arising from the simplest form of a binary 
Markov random field (BMRF). Suppose the n fibers in a 
particular muscle section are defined as z = {z1, . . . , zn} , 
where zi is −1 if the i th fiber is slow, or +1 if it is fast. 
These are treated as a realization of a corresponding ran-
dom variable Z . The BMRF is used to model the prob-
abilities of different combinations of z ; expressed as a 
function of the fiber values with respect to the neighbor 
network:

Here, α and β are fixed, and the notation i ∼ j indicates 
the second sum is taken only over each neighbor pair.

The key to understanding Eq. (1) is the interpretation of 
the parameters α and β . The former simply describes the 
balance between the numbers of slow and fast fibers—a 
value close to zero implies the counts are roughly equal; 
a negative value implies there are more slow than fast; 
a positive value yields more fast than slow. The interest 
lies typically in the value of the other parameter, β , which 
controls the behavior between neighbors. When β is 
close to zero, this is equivalent to a “null” scenario where 
fast and slow types are randomly scattered throughout 
the sample. A negative value of β implies fibers of the 
same type are less likely to be neighbors—that they are 
negatively correlated spatially—like-type repulsion. A 
positive value of β dictates positive correlation—like-type 
attraction. Repulsion leads to a chequerboard effect, and 
attraction yields clusters of fibers of the same type. For 
details on the methods used to gain the parameter esti-
mates of α and β in practice, see Venema [16] or Davies 
et al. [17]. The estimated value of β may be compared to a 
numerically derived permutation envelope, which essen-
tially acts as a benchmark for establishing whether it is 
significantly different from zero.

The BMRF approach thus has several advantages over 
the simpler tests. Not only may we ascertain the presence 
or absence of non-randomness in the spatial arrange-
ment of the two fibers, but the strength and direction of 
any present like-type neighborly behavior may be for-
mally quantified via the estimated value of β (and this 
interpretation is valid for any overall proportion of slow 
versus fast fibers).

Generalized additive model
One thing the simple BMRF described above cannot 
do is inform on explicit spatial patterning in subregions 
of a given muscle cross-section; i.e., localize precisely 
where in a specimen we might observe features of inter-
est. Rather than simply deducing whether or not a given 
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section possesses like-type clustering, it may be of inter-
est to model the probability of a chosen fiber type occur-
ring and look at how this probability varies spatially 
across the section, especially in muscles where the typical 
distribution of fibers is non-uniform [3].

The probability pi that a given fiber i at coordinate 
(

xi, yi
)

 is fast can be modeled to be a smooth function 
of its position in the muscle section through the use of 
a generalized additive model (GAM) [21]. To our knowl-
edge, GAMs have not previously been used to model spa-
tial patterning in muscle fiber position data. A GAM is 
an extension of a generalized linear model (GLM) that 
allows the relationship between the predictors and the 
response to be smooth but non-linear. In our case, we 
model the log odds of a given fiber being fast via a logistic 
GAM, expressed as follows:

This equation is very similar to the form of a logis-
tic regression model but with terms added to allow for 
greater flexibility in the resulting trend surface. The 
functions b3, . . . bK  are non-linear and are chosen to 
allow the resulting function to closely match the pat-
terns in the data. A common choice is a thin plate spline 
regression basis [22]. Estimation of the β parameters 
(note that these are completely different to the β used 
in the BMRF method) relies on a “penalty” parameter 
we call � , which controls the “smoothness” of the over-
all result. There are data-driven techniques to choose an 
optimal � . For more details, see the supplement and the 
work by Wood [21, 22].

Once we have fitted a logistic GAM to a muscle section 
data set, we can visualize the trend in fiber type proba-
bilities across the section, revealing potential features of 
interest. Unlike the previous methods outlined above, fit-
ting a GAM does not require explicit knowledge of the 
neighborhood structure. However, the natural effect of 
smoothing means the probability for a given fiber will be 
influenced mainly by nearby fibers.

Multinomial GAM
A weakness of the methods described is that they are 
designed for data that are binary. It is in general not 
straightforward to extend the methodology to cases 
where there are more than two classes, for example, if 
we were to further classify type II fibers into subtypes IIa 
and IIb. The exception is the GAM which can easily be 
extended to allow for three (or more) fiber types. A mul-
tinomial GAM [21] has a categorical response variable 
with a probability associated with each category. These 

(2)

log

(

pi

1− pi

)

= β0 + β1xi + β2yi +

K
∑

k=3

βkbk
(

xi, yi
)

probabilities are described in a similar way to Eq.  (2) 
and use the same functions b3, . . . bK  from the thin plate 
regression spline basis. For three fiber types (I, IIa, and 
IIb), we construct two surfaces each with its own set of 
β parameters and smoothing parameter � . Because the 
probabilities are required to sum to 1 for each fiber, these 
two surfaces are used to determine probabilities for each 
of the three types.

Implementation
All of the above methods can be implemented in stand-
ard statistical software such as the R language [23]. We 
have developed a browser-based application [24] to 
showcase these techniques and produce relevant plots 
and conclusions for a supplied dataset. The user needs 
to supply a CSV file with columns for the x coordinate, 
y coordinate, and fiber type for each fiber. The app will 
pre-process the data and produce plots such as those 
in Fig. 1. Available options in the app include the mean 
cluster size and number of unlike neighbor pairs tests, 
as well as the “proportion abnormally grouped” statistic. 
It can also estimate and interpret the parameters for the 
BMRF model. For the logistic GAM model, the app cal-
culates and plots the probabilities of each fiber being fast 
contracting/type II. If desired, the user can manually vary 
the value of the smoothing parameter � from a standard 
default and visualize the resulting probability surface. 
The multinomial GAM is also available if the supplied 
data file has three fiber types, and the app calculates and 
plots the probability surfaces for each type. The applica-
tion is accessible at https:// www. stats. otago. ac. nz/ softw 
are/ muscl es/ (uploaded data is not visible to any party 
beyond the user themselves and is permanently erased 
upon browser close or refresh).

Results
Summary‑ and test‑based methods
Table 1 shows the results of the three summary- and test-
based methods applied to the same three example sec-
tions. The data for these three specimens are provided 
alongside the online supplement to this article in a form 
ready to be used by the web application mentioned above.

The results for the mean cluster size test show the 
mean cluster size in each sample, along with an enve-
lope in which the statistic would be expected to fall if the 
fiber types were allocated randomly. Note that in all three 
cases, the rarer fiber type count exceeds the guideline 
of 30%, and so results should be interpreted with cau-
tion. For the first two sections, the mean cluster size is 
within the range expected from a random fiber distribu-
tion so there is no evidence of like-type clustering. The 
mean cluster size for the third section is below the enve-
lope, indicating the clusters are smaller than would be 

https://www.stats.otago.ac.nz/software/muscles/
https://www.stats.otago.ac.nz/software/muscles/
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expected of a random fiber distribution, so there is evi-
dence of like-type repulsion.

For the unlike neighbor pairs test, Table  1 shows the 
expected number of unlike neighbor pairs, based on 
the assumption of a random distribution, as well as the 
number observed in the data, with an associated p value 
to indicate whether the results yield evidence of non-
randomness. The first section has 1181 unlike neighbor 
pairs, which is only slightly less than the expected value, 
so this is not a significant departure from randomness. 
The number of unlike neighbor pairs for the second and 
third specimens (955 and 1021, respectively) do give sig-
nificant p values, suggesting evidence of like-type attrac-
tion for the second section and like-type repulsion for the 
third.

We also looked at the percentage of abnormally 
grouped fibers. The first section has 51% slow fibers, the 
majority of which (85.7%) belong to either of two very 
large “abnormal” clusters. Similarly, both of the other 
two sections have most (96% and 95.6%, respectively) 
of their slow fibers in one contiguous group and all are 
subsequently classified as abnormally grouped. When the 
analysis focuses on the (less prevalent) fast fibers the per-
centages found as abnormally grouped are lower, with the 
first and second specimens having more “abnormal” clus-
tering than the third. These differences in results based 
solely on whether we focus on either slow or fast fibers 

highlight the caution required when comparing these 
statistics between specimens with different overall fiber-
type proportions.

Model‑ and smoothing‑based methods
First, the BMRF was fitted to our three example sections, 
and the results are reported in Table 2.

All three sections have a negative estimate for α , con-
firming slow fibers outnumber fast fibers. After account-
ing for the overall proportions of each fiber type, the first 
two examples have positive estimates for β , suggesting 
like-type attraction. For the first specimen, this value 
is very close to zero and within the envelope of values 
expected from a random distribution, hence does not 
indicate a departure from randomness. For the second 
section, the estimate for β is outside of the envelope; sig-
nificant evidence that the distribution of fibers is non-
random. The estimate is also outside of the envelope for 
the third section, but this time it is negative, indicating 
significant evidence of like-type repulsion.

Next, we fitted the (binary) logistic GAM as expressed 
by Eq. (2) to the three example sections. These permit the 
calculation of the conditional probability of a fiber at any 
given 

(

x, y
)

 location being fast; corresponding plots are 
shown in Fig. 2. Rather than measuring clustering behav-
ior over the muscle as a whole, these plots show how the 

Table 1 Summary- and test-based results for the three example sections

Section

1 2 3

Mean cluster size 11.6 5 4.4

Envelope (10.7, 21.4) (4, 5.8) (4.5, 6.9)

Conclusion/Evidence (mean cluster size test) Random Random Like-type repulsion

Expected unlike neighbor pairs 1187.1 1037.4 957.3

Observed unlike neighbor pairs 1181 955 1021

p-value 0.8177 2× 10
−4 0.0033

Conclusion/Evidence (unlike neighbor pairs test) Randomness Like-type attraction Like-type repulsion

% abnormally grouped slow fibers 85.7% 96% 95.6%

% abnormally grouped fast fibers 65.2% 55.3% 28.4%

Table 2 Results of the BMRF fitted to the three example sections

Section

1 2 3

Estimate for α  − 0.0165  − 0.177  − 0.348

Estimate for β 0.00349 0.0636  − 0.0902

Envelope for β = 0  (− 0.0363, 0.0295)  (− 0.046, 0.0414)  (− 0.0423, 0.0445)

Conclusion/Evidence Random Like-type attraction Like-type repulsion
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probability of a particular fiber type is estimated to fluc-
tuate across the specimen.

The first plot shows a similar pattern as is observed 
from the fiber-type plots. For example, there is a promi-
nent region in the top left of the sample where the prob-
ability of a fiber being fast is low. The second image 
suggests the probability of a fiber being fast is highest 
near the edges of the section and lowest near the center 
of the section. The third image shows the section does 
not have a strong pattern in the fiber types, as the prob-
ability of a fiber being fast is fairly constant across the 

whole section, roughly between 0.3 and 0.5. Given that 
many muscles have a non-uniform distribution of fiber 
types across the muscle [3], these plots can facilitate 
assessments of change in said distribution as a function 
of biologically important variables such as age or disease.

To illustrate the multinomial GAM, we introduce a 
data set simulated to mimic the distribution of three fiber 
types (I, IIa, and IIb) in a rodent tibialis anterior muscle 
(Fig.  3). After fitting a multinomial GAM, Fig.  3 shows 
the type-specific probabilities for each fiber. There are 
few type I fibers, so the probability of being type I is low 

Fig. 2 Probability of a fiber showing a fast phenotype estimated from a logistic GAM

Fig. 3 Fiber types (top left) and probability surfaces for types I (top right), IIa (bottom left), and IIb (bottom right) estimated using a multinomial 
GAM
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across the section, with a maximum value of about 0.3 in 
the top left part of the section (deep in the muscle). The 
probabilities of being type IIa and IIb both range from 
around 0.2 to 0.8, with a higher probability of being type 
IIa in deep regions (upper left of section) and a higher 
probability of being type IIb in superficial areas (lower 
right of the section).

A group‑based comparison
Certain tools can assist with important group-based 
comparisons frequently encountered in practical applica-
tions, for instance, when examining differences between 
age- or disease-related sections. To illustrate a simple 
way in which we might do so using existing methodolo-
gies, we consider a larger group of 30 mouse soleus mus-
cles, split into two age subgroups—14 from young mice 
and 16 from older animals (the three sections in Fig.  1 
used as running examples were taken from this collec-
tion). We fit the BMRF model to each specimen, obtain-
ing estimates of the parameters α and β for each; results 
are illustrated with a scatterplot in Fig. 4. Here, we note 
the geriatric muscles tend to have lower values for α and 
higher values for β than the younger muscles, suggesting 
that (a) they contain a lower proportion of fast fibers and 
(b) a higher tendency of like-type spatial grouping when 
compared to the group of young muscles.

Boxplots in Fig.  5 show the distinctions in the mar-
ginal distributions of the two parameters. Given these, 
it is unsurprising that a simple t test gives evidence 
that on average, the estimates for the α parameters are 

significantly lower for the muscles in the older age group 
(p value 5.8× 10−5 ), and the estimates for the β param-
eters are significantly higher for the geriatric muscles (p 
value 0.031 ). The Mann–Whitney U test, a non-paramet-
ric test with less restrictive assumptions typically used 
in the case of small sample sizes, offers the same conclu-
sions for both α (p value 1.2× 10−4 ) and β (p value 0.017).

Discussion
Muscle fiber type initially arises during early develop-
ment as a function of the specific lineages of cells con-
tributing to muscle fiber formation [25–27], but the 
mature fiber-type distribution emerges as a consequence 
of interaction with the nerve, including usage pattern 
and molecular signaling [2]. Changes to the number or 
spatial distribution of fiber types within the muscle are 
therefore indicative of an alteration in muscle usage pat-
tern or innervation status. Our understanding of both 
normal aging and neuromuscular disease processes 
would be improved if we understood how and why such 
alterations in usage occurred, particularly since the con-
sequences of these changes are typically weakness and 
loss of muscle mass—a topic of importance recognized 
by a number of authors to date [28]. An essential part of 
this pursuit is to have available a range of statistical tools 
to offer a more objective appraisal of spatial patterns in 
muscle sections. To this end, we have highlighted exist-
ing methods and proposed new ways to quantify mus-
cle fiber-type distributions. The simple summary-based 
methods are designed to detect like-type attraction or 

Fig. 4 BMRF parameter estimates for mouse soleus muscles from two age groups



Page 9 of 11Redmond et al. Skeletal Muscle            (2023) 13:7  

repulsion in a given section. The two model-based meth-
ods allow for richer statistical inferences to be made 
about the fiber type distribution across a section. The 
BMRF model can quantify the level of like-type attrac-
tion or repulsion between fibers over the section as a 
whole after adjustment for overall fiber-type proportions. 
The logistic GAM can provide an insight into any pat-
terns in the type distribution across the muscle section 
and allows us to visualize the spatial trends. This might 
be particularly valuable when asking whether a change 
in a major spatial trend has occurred as a result of aging 
or disease. Additionally, we have developed a web-based 
tool to facilitate ready access to all described methods by 
non-statisticians.

The summary-based approaches and BMRF model are 
reliant on the binary demarcation of fiber type. That is, 
the processes are applied to images of muscle sections in 
which (immuno-) histochemical techniques have marked 
the fibers as either fast or slow. In most cases, this is an 
oversimplification of the true status of the fast fiber sub-
sets, since not only can the fast subcategory be further 
subdivided (i.e., types IIa, IIb, IIx), but individual fibers 
might also display the features of more than one category 
at any one time [29]. Such “hybrid” fibers are typically 
thought to have been sampled at a time when fiber-
type transformation was occurring due to the recent 
imposition of an altered usage pattern. Unlike the other 
methods, the logistic GAM can be easily extended to a 
multinomial model to allow for three or more fiber types, 
making this a more flexible approach. However, this still 

requires a choice of how many types to allow and each 
fiber must then be classified into one category. The digi-
tization of the (immuno)histochemical staining process 
gives continuous color values to support the fiber-typing 
criteria and analyzing these directly instead would avoid 
the need to make such threshold-based categorizations, 
as well as allowing hybrid fibers to have values between 
the two main fiber types. We are currently investigating 
more general statistical methods to better cope with such 
data sets.

A limitation of all existing methods is that they are spe-
cific to a given muscle section. While it is entirely possi-
ble to conduct post hoc hypothesis tests between groups 
for some of the simpler measures (as we have demon-
strated with the BMRF fitted to young and geriatric sec-
tions), it is preferable to develop structured models that 
explicitly build in support for group-specific effects. We 
are currently undertaking further research to develop 
new, statistically rigorous methodologies to formalize 
between-group comparisons.

Conclusions
The currently available methods for the analysis of fiber 
type distributions on histological skeletal muscle sections 
deliver variable results when applied to the same speci-
men and are limited in their ability to support analysis 
of distributions across the entire section. Furthermore, 
current models have had little uptake in practice due to 
difficulties associated with implementation. In addition 
to summarizing the previous methodologies, we have 

Fig. 5 Boxplots comparing the estimates for the two parameters of the BMRF model between young and geriatric mouse soleus muscles
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described a new approach via a logistic generalized addi-
tive model; capable of providing an insight into the fiber 
type distribution across the section as a whole and easily 
extended to describe the distributions of three or more 
fiber types. We provide access to a freely available web-
based application that allows users to process their own 
datasets using all methods described herein. This simple-
to-use software gives the community access to a powerful 
suite of analytical tools that provides a robust interpreta-
tion of spatial data, thereby removing a significant barrier 
to statistical analysis of changes in fiber type distributions 
in systems affected by age or disease.

Abbreviations
GAM  Generalized additive model
GLM  Generalized linear model
BMRF  Binary Markov random field

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13395- 023- 00316-0.

Additional file 1. New tools for the investigation of muscle fiber-type 
spatial distributions across histological sections. Figure S1. Proportions 
of abnormally grouped type I fibers for simulated data with randomly 
allocated fiber types. Figure S2. Plots of fiber types for 30 mouse soleus 
muscles, 14 young and 16 geriatric.

Additional file 2. 

Acknowledgements
AKR is the grateful recipient of a Ph.D. studentship from the University of 
Otago. Navneet Lal provided the tissues for processing and analysis.

Authors’ contributions
AKR performed all statistical analyses and developed the software app. TMD 
and MRS supervised the statistical analyses and software development. PWS 
provided the data and advised on the direction of analysis. All authors con-
tributed to the writing and revision of the manuscript. The authors read and 
approved the final manuscript.

Funding
Funding for this work is derived from internal support from the Departments 
of Physiology and Mathematics and Statistics at the University of Otago.

Availability of data and materials
The datasets used in this study are available as supplementary information 
files. The software developed and described is freely accessible at https:// 
www. stats. otago. ac. nz/ softw are/ muscl es/.

Declarations

Ethics approval and consent to participate
The use of animal tissues in this study was approved by the University of 
Otago Animal Ethics Committee.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 July 2022   Accepted: 16 April 2023

References
 1. Lieber R, Friden J. Functional and clinical significance of skeletal muscle 

architecture. Muscle Nerve. 2000;23:1647–66.
 2. Schiaffino S, Sandri M, Murgia M. Activity-dependent signaling pathways 

controlling muscle diversity and plasticity. Physiology. 2007;22(4):269–78.
 3. Armstrong RB, Phelps RO. Muscle fiber type composition of the rat 

hindlimb. Am J Anat. 1984;171:259–72.
 4. Pette D. The adaptive potential of skeletal muscle fibers. Can J Appl 

Physiol. 2002;27(4):423–48.
 5. Lexell J, Downham D, Sjostrom M. Distribution of different fiber types in 

human skeletal muscles. Fiber type arrangement in m. vastus lateralis 
from three groups of healthy men between 15 and 83 years. J Neurol Sci. 
1986; 72: 211-222.

 6. Lexell J, Downham D, Sjostrom M. Morphological detection of neuro-
genic muscle disorders: how can statistical methods aid diagnosis? Acta 
Neuropathol. 1987;75:109–15.

 7. Andersen JL. Muscle fiber type adaptation in the elderly human muscle. 
Scand J Med Sci Sports. 2003;13:40–7.

 8. Venema HW. Spatial correlation in muscle fiber patterns. PhD thesis. 
Amsterdam: University of Amsterdam; 1982.

 9. Pernuš F. The Delaunay triangulation and the shape hull as tools in mus-
cle fiber analysis. Patt Recog Lett. 1988;8:197–202.

 10. Venema HW. Determination of nearest neighbors in muscle fiber patterns 
using a generalized version of the dirichlet tessellation. Patt Recog Lett. 
1991;12:445–9.

 11. Howel D, Brunsdon C. A simple test for the random arrangement of 
muscle fibers. J Neurol Sci. 1987;77:49–57.

 12. Howel D. A test to detect clustering applied to muscle fibers. Stat Med. 
1988;7:1157–64.

 13. Venema HW. Spatial distribution of fiber types in skeletal muscle: test for 
a random distribution. Muscle Nerve. 1988;11:301–11.

 14. Wilson BC, Downham DY, Lexell J, and Sjöström M. Some probability 
models for diagnosing neurogenic disorders. IMA J Math Appl Med Biol. 
1988; 5 (3): 167–179.

 15. Venema HW. Modeling fiber type grouping by a binary Markov random 
field. Muscle Nerve. 1992;15:725–32.

 16. Venema HW. Estimation of the parameters of a Binary Markov Random 
Field on a graph with application to fiber type distributions in a muscle 
cross-section. IMA J Math Appl Med Biol. 1993;10:115–33.

 17. Davies TM, Cornwall J, Sheard PW. Modelling dichotomously marked 
muscle fibre configurations. Stat Med. 2013; 32 (24): 4240–4258.

 18. Kelly NA, Hammond KG, Stec MJ, Bickel CS, Windham ST, Tuggle SC, 
Bamman MM. Quantification and characterization of grouped type I 
myofibers in human aging. Muscle Nerve. 2018; 57 (1): E52–59.

 19. Davies TM, Schofield MR, Cornwall J, Sheard PW. Modelling multilevel 
spatial behaviour in binary-mark muscle fibre configurations. Ann Appl 
Stat. 2019;13(3):1329–47.

 20. Rodriguez-Torres EE, Viveros-Rogel J, López-García K, Vázquez-Mendoza 
E, Chávez-Fragoso G, Quiroz-González S, Jiménez-Estrada I. Chronic 
undernutrition differentially changes muscle fiber types organization and 
distribution in the EDL muscle fascicles. Front Physiol. 2020; https:// doi. 
org/ 10. 3389/ fphys. 2020. 00777.

 21. Wood SN. Generalized additive models: an introduction with R. 2nd ed. 
Boca Raton: CRC press; 2017.

 22. Wood SN. Thin plate regression splines. J Roy Stat Soc: Ser B (Stat Meth-
odology). 2003;65(1):95–114.

 23. R Core Team. R: A language and environment for statistical computing. 
Vienna: R Foundation for Statistical Computing; 2022. https:// www.R- 
proje ct. org/.

 24. Chang W, Cheng J, Allaire J, Sievert C, Schloerke B, Xie Y, et al. shiny: 
web application framework for R. R package version 1.7.4. 2022. https:// 
CRAN.R- proje ct. org/ packa ge= shiny.

 25. Ross JJ, Duxson MJ, Harris AJ. Formation of primary and secondary myo-
tubes in rat lumbrical muscles. Development. 1987;100:383–94.

https://doi.org/10.1186/s13395-023-00316-0
https://doi.org/10.1186/s13395-023-00316-0
https://www.stats.otago.ac.nz/software/muscles/
https://www.stats.otago.ac.nz/software/muscles/
https://doi.org/10.3389/fphys.2020.00777
https://doi.org/10.3389/fphys.2020.00777
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny


Page 11 of 11Redmond et al. Skeletal Muscle            (2023) 13:7  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 26. Zhang M, Koishi K, McLennan IS. Skeletal muscle fiber types: detec-
tion methods and embryonic determinants. Hist Histopathol. 
1998;13(1):201–7.

 27. Yusuf F, Brand-Saberi B. Myogenesis and muscle regeneration. Histochem 
Cell Biol. 2012;138(2):187–99.

 28. Larsson L, Degens H, Li M, Salviati L, Lee Y, Thompson W, Kirkland J, Sandri 
M. Sarcopenia: aging-related loss of muscle mass and function. Physiol 
Rev. 2019;99:427–511.

 29. Pette D, Staron DS. Myosin isoforms, muscle fiber types, and transitions. 
Microsc Res Tech. 2000;50(6):500–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	New tools for the investigation of muscle fiber-type spatial distributions across histological sections
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Motivating examples and data processing
	Summary- and test-based methods
	Mean cluster size
	Unlike neighbor pairs
	Abnormally grouped fibers

	Model- and smoothing-based methods
	Binary Markov random field
	Generalized additive model
	Multinomial GAM

	Implementation

	Results
	Summary- and test-based methods
	Model- and smoothing-based methods
	A group-based comparison

	Discussion
	Conclusions
	Anchor 25
	Acknowledgements
	References


