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Measuring microRNA reporter activity in skeletal
muscle using hydrodynamic limb vein injection of
plasmid DNA combined with in vivo imaging
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Abstract

Background: microRNA regulation plays an important role in the remodeling that occurs in response to pathologic
and physiologic stimuli in skeletal muscle. In response to stress, microRNAs are dynamically regulated, resulting in a
widespread “fine-tuning” of gene expression. An understanding of this dynamic regulation is critical to targeting
future therapeutic strategies. Experiments elucidating this dynamic regulation have typically relied on in vitro reporter
assays, ex vivo sample analysis, and transgenic mouse studies. Surprisingly, no experimental method to date allows
rapid in vivo analysis of microRNA activity in mammals.

Methods: To improve microRNA studies we have developed a novel reporter assay for the measurement of skeletal
muscle microRNA activity in vivo. To minimize muscle damage, hydrodynamic limb vein injection was used for the
introduction of plasmid DNA encoding bioluminescent and fluorescent reporters, including click-beetle luciferase and
the far-red fluorescent protein mKATE. We then applied this technique to the measurement of miR-206 activity in
dystrophic mdx4cv animals.

Results: We found that hydrodynamic limb vein injection is minimally damaging to myofibers, and as a result no
induction of muscle-specific miR-206 (indicative of an injury response) was detected. Unlike intramuscular injection or
electroporation, we found that hydrodynamic limb vein injection results in dispersed reporter expression across
multiple hindlimb muscle groups. Additionally, by utilizing click-beetle luciferase from Pyrophorus plagiophthalamus as a
reporter and the far-red fluorescent protein mKATE for normalization, we show as a proof of principle that we can
detect elevated miR-206 activity in mdx4cv animals when compared to C57Bl/6 controls.

Conclusion: Hydrodynamic limb vein injection of plasmid DNA followed by in vivo bioluminescent imaging is a novel
assay for the detection of reporter activity in skeletal muscle in vivo. We believe that this method will allow for the rapid
and precise detection of both transcriptional and post-transcriptional regulation of gene expression in response to
skeletal muscle stress. Additionally, given the post-mitotic status of myofibers and stable expression of plasmid DNA,
we believe this method will reduce biological variability in animal studies by allowing longitudinal studies of the same
animal cohort.
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Background
Skeletal muscle displays a remarkable ability to remodel
in response to pathologic and physiologic stimuli ([1-3]
and reviewed in [4]). How changes in gene expression
mediate these processes by post-transcriptional regula-
tion has been heavily studied in the context of diseased,
hypertrophic, and regenerating skeletal muscle [5-7].
While recent studies have greatly enhanced our under-
standing of these dynamic processes, measuring post-
transcriptional changes that occur in vivo is challenging
and this has limited the experimental avenues available.
Additionally, the discovery of post-transcriptional regu-
lation by microRNAs (miRNAs) in skeletal muscle has
increased the complexity of these processes.
miRNAs are a type of short, non-coding RNA that

post-transcriptionally regulate gene expression. miRNAs
function by guiding the RNA-induced silencing complex
(RISC) to target mRNAs, dictated by base pairing to tar-
get sites primarily in their 3′-untranslated regions
(UTRs). miRNAs can downregulate the expression of
several to hundreds of target genes by repressing transla-
tion and/or destabilizing target mRNAs [8,9]. miRNAs
are required for normal skeletal muscle development in
mice [10], and several miRNAs have been shown to be
dynamically regulated during hypertrophy [11], acute ex-
ercise [12], regeneration after injury [13], and in the re-
modeling that occurs in response to genetic muscle
disease [14-17]. In particular, miR-206 is expressed spe-
cifically in skeletal muscle, and is highly expressed in re-
generating fibers [13]. miR-206 has been shown to
promote terminal differentiation of myoblasts by regulat-
ing the expression of genes including connexin43 [18],
utrophin [19], pax3 [20], pax7 [21] and DNA polymerase
α [22]. Many of these studies rely on data obtained from
transgenic mouse studies, and ex vivo sample analysis -
both currently invaluable to the study of miRNAs. The
study of miRNA regulation in skeletal muscle, however,
would benefit from a system that enabled rapid, repro-
ducible, longitudinal in vivo reporter assays, at a fraction
of the cost of transgenic mouse production and analysis,
and with fewer animals needed than for ex vivo studies.
Several studies have shown that stable gene expression

can be achieved in post-mitotic myofibers in vivo by the
introduction of plasmid DNA (pDNA) [23-26]. Unlike
viral DNA vectors, pDNA is non-immunogenic [23], eas-
ily manipulated, and relatively inexpensive to produce.
Methods for introducing naked pDNA into myofibers
include intramuscular injection [24], electroporation
[26,27], and more recently, hydrodynamic limb vein
(HLV) injection [28,29]. While these methods all result
in efficient myofiber transduction, only HLV injection is
minimally damaging to the muscle [30], enabling studies
of muscle remodeling to take place in the absence of
widespread myofiber regeneration. Moreover, HLV
injection results in more widespread pDNA distribution
than intramuscular injection or electroporation, which
are limited to the site of injection, or single muscle
groups, respectively [24,26].
In vivo bioluminescent and fluorescent imaging (BLI)

of genetically encoded reporters has been a useful tool
in murine xenograft studies including cancer [31],
chondrogenic differentiation [32], viral infection [33],
and even in studies of miRNA biogenesis and post-
transcriptional regulation [34,35]. All of these studies,
however, have relied on the expression of reporter genes
in cells cultured in vitro, and none have demonstrated
the ability to quantify skeletal muscle reporter gene ex-
pression in situ. We therefore developed a novel system
using HLV injection of reporter pDNA into skeletal
muscle in combination with in vivo BLI in order to
quantify miRNA activity. Before testing, we anticipated
that animal-to-animal variation in injection efficiency
would confound true changes in reporter expression.
While several groups have reported the utility of Renilla
luciferases as a normalizer in in vivo reporter studies
[32,36], we found that the fast kinetics and requirement
for intravenous substrate delivery made this approach
technically challenging. To solve this problem, we
employed a dual-reporter approach consisting of a
high-efficiency click-beetle luciferase from Pyrophorus
plagiophthalamus (CBG99) [37], and the far-red fluores-
cent protein mKATE [38] for signal normalization.
mKATE has been shown to have a maximum emission
wavelength (635 nm) that is optimal for tissue penetra-
tion, and to have high pH and photostability, making
this an ideal protein for in vivo BLI.
As a proof of principle, we measured miR-206 ac-

tivity and show that the activity measured using this
technique reproduces the levels obtained from quanti-
tative reverse transcription PCR (qRT-PCR) measure-
ments. We believe this technique will prove useful not
only in the quantification of real-time miRNA activity, but
also in studies of transcriptional and post-transcriptional
regulation.
Methods
Plasmid construction
Two perfectly complementary miR-206 [NCBI:NR_029593]
binding sites were inserted between the Xba1 and Fse1
restriction sites downstream of the CBG99 stop codon in
pCBG99-Control (Promega, Madison, WI, USA) using
the following oligonucleotide sequences: 5′-CTAGACC
ACACACTTCCTTACATTCCAAAACCACACACTTCC
TTACATTCCAGGCCGG, and 5′-CCTGGAATGTAAG
GAAGTGTGTGGTTTTGGAATGTAAGGAAGT GTG
TGGT. pcDNA-mKATE was a kind gift from Amy
Palmer (University of Colorado at Boulder, Boulder, CO,
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USA), and pCMV-eGFP from Stephen Langer (University
of Colorado at Boulder, Boulder, CO, USA).

Hydrodynamic limb vein injection
All animal experiments were performed using protocols
approved by University of Colorado and Colorado State
University Institutional Animal Care and Use Commit-
tees (IACUC). Mice were injected according to a proto-
col modified from Hagstrom, et al. [29]. Briefly, after
sedation with 1 to 4% inhaled isoflurane, a tourniquet
was secured around the upper hindlimb to restrict blood
flow for 1 to 2 minutes prior to injection, and 2 minutes
after injection. The hindlimb was first cleaned with 70%
ethanol, and an incision was made with surgical scissors
on the medial surface of the leg to expose the great sa-
phenous vein. A ½ inch 30-gauge needle connected by
catheter to a syringe was then inserted in an anterograde
direction into the vein. Endotoxin-free pDNA isolated
using Endofree® Plasmid Maxi Kit (Qiagen, Hilden,
Germany) and diluted in sterile saline solution (volume
determined according to the formula: 1 + (((body weight
in grams − 25)/25) × 1/2)mL), was delivered at a rate of
7 mL/minute by a programmable syringe pump (KD Sci-
entific, Holliston, MA, USA). Two minutes after the in-
jection was completed, the tourniquet was released and
the incision was closed with nonabsorbable 6–0 silk su-
ture (Davis-Geck, Brooklyn, NY, USA). Mice recovered
on a 37°C heat block and were monitored for adverse
effects.

Barium chloride injury
To induce muscle degeneration, mice were first anesthe-
tized with 1 to 4% inhaled isoflurane, and the right hind-
limb was shaved. After cleaning the area with 70%
ethanol, the right gastrocnemius was injected with 50 μL
of a 1.2% barium chloride solution in normal saline
using a 27-gauge insulin syringe. Mice recovered on a
37°C heat block and were monitored for adverse effects.

In vivo bioluminescent and fluorescent imaging
Animals were anesthetized using 1 to 4% isoflurane prior
to imaging and placed in the chamber of an IVIS 100
in vivo imaging system (Caliper Biosciences, Hopkinton,
MA, USA) housed at Colorado State University’s Animal
Cancer Center (Fort Collins, CO, USA). The mKATE
fluorescent signal was then collected using sequential
mode with a 1-s exposure time and the Cy5.5 excitation/
emission filter set. Animals were then removed from the
imaging chamber and injected intraperitoneally with 200
μL of 30 mg/mL D-luciferin. Ten minutes after substrate
injection, bioluminescent signal was collected for 1 mi-
nute using the open filter mode. Images were analyzed
using LivingImage software (Caliper Biosciences) and
photons/sec/cm2/steradian were quantified using region-
of-interest (ROI) analysis. Mice recovered from anesthesia
on a 37°C heat block.
Immunofluorescence
Muscles for immunofluorescence were frozen in liquid
nitrogen-cooled isopentane and mounted in optimal
cutting temperature (OCT) medium (Sakura Finetek,
Torrance, CA, USA). Cryosections (12 μm thick) were
fixed in 4% paraformaldehyde for 10 minutes at room
temperature, then blocked for 1 hour with 5% goat serum
in PBS and 0.1% Triton X-100. Following blocking, sec-
tions were stained with anti-laminin at 1:500 (L-9393,
Sigma, St. Louis, MO, USA) or anti-desmin at 1:20
(D-8281, Sigma) overnight at 4°C. After washing sev-
eral times in PBS with 0.1% Triton X-100, anti-rabbit
Texas red secondary antibody was applied at 1:100 di-
lution for 1 hour at 37°C (711-075-152, Jackson, West
Grove, PA, USA). After washing again in PBS with
0.1% Triton X-100, sections were counterstained with
300 nM 4′,6-diamidino-2-phenylindole (DAPI) for 5
minutes at room temperature (Sigma D-9542), and
mounted using Fluoromount G (Southern Biotech,
Birmingham, AL, USA).
Quantification of injection efficiency
To determine HLV injection efficiency, percentages of
GFP-positive fibers were quantified using immunofluor-
escence on lower hindlimb sections from pCMV-eGFP-
injected animals. Following imaging on an inverted
epifluorescent microscope (Eclipse TE2000, Nikon, Melville,
NY, USA), GFP, laminin, and DAPI images were merged
to produce a composite (ImageJ software, National Insti-
tutes of Health, Bethesda, MD, USA). GFP-positive fibers
were counted when GFP signal across a myofiber was
greater than background levels. Total fiber number
was counted using laminin staining to demarcate fiber
boundaries. Percentages are reported as an average of
GFP-positive fibers for ten fields of view for the gastro-
cnemius, and five fields each for the soleus and tibialis
anterior (TA).
qRT-PCR
To measure miRNA expression, total RNA was first iso-
lated from snap-frozen skeletal muscles using TRI re-
agent (Molecular Research Center, Cincinnati, OH,
USA). Then, 7 ng of total RNA per reaction was reverse-
transcribed and PCR-amplified on a CFX96 thermocycler
(Bio-Rad, Hercules, CA, USA) using Taqman miRNA as-
says (Invitrogen, Grand Island, NY, USA). Relative miRNA
expression was determined using the 2-ΔΔCt method [39],
using sno202 as a reference gene.
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Figure 1 miR-206 levels after hydrodynamic limb vein injection. (A) Schematic depiction of hydrodynamic limb vein injection (HLV) of
plasmid DNA followed by in vivo bioluminescent and fluorescent imaging (BLI). (B) miR-206 expression in 3 to 4 month-old C57Bl/6 mice
receiving either HLV injection of saline solution or BaCl2 injury, sacrificed at the indicated time points, normalized to sno202. Relative levels
measured in the right (treated) gastrocnemius are displayed as mean values normalized to contralateral controls; n= 3 or 4 animals/group, Error
bars = standard error of the mean. *P ≤0.05, **P ≤0.001.
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Figure 2 Reporter distribution. Reporter expression after
hydrodynamic limb vein injection. Left column: green fluorescent
protein (GFP) epifluorescent signal displayed as inverted grayscale
image, percentages are an average of GFP-positive fibers for indicated
muscles. Right column: immunostaining for laminin (red) and
epifluorescence for GFP (green) and 4′,6-diamidino-2-phenylindole
(DAPI) (blue) to show distribution of GFP-positive myofibers in
indicated muscles; n=1 animal. Scale bars = 100 μm. TA, tibialis anterior.

mKATE

p
cD

N
A

-m
K

A
T

E
p

cD
N

A
-m

K
A

T
E

 +
 

p
C

B
G

99
-L

u
c-

C
o

n
tr

o
l

Figure 3 Reporter detection using in vivo bioluminescent imaging. M
pCBG99-Luc-Control (bottom). Data collected using Cy5.5 excitation/emissi
the right column.
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Statistical analysis
For qRT-PCR experiments, relative miR-206 expression
values were compared to controls (for assessment of
muscle damage, controls were uninjured/uninjected
contralateral limbs for each time point, and for miR-206
reporter measurements, controls were C57Bl/6 animals)
using the unpaired Student’s t-test. For BLI measure-
ments, statistics were performed by comparing mean
normalized photons/s/cm2/steradian (CBG99/mKATE)
of pCBG99-2x-miR-206-injected hindlimbs, to mean
normalized photons/s/cm2/steradian of pCBG99-Control-
injected hindlimbs for mdx4cv and C57Bl/6 animals using
the unpaired Student’s t-test.

Results
HLV injection does not induce myofiber regeneration
Prior to employing HLV to deliver miRNA reporters for
miR-206 activity, it was important to determine whether
the injection technique itself would induce muscle regen-
eration and consequently increase the levels of miR-206.
To test this, we performed HLV injection (Figure 1A) on
wild-type C57Bl/6 mice using saline only and compared
miR-206 expression to that in animals injured with BaCl2.
miR-206 levels decreased slightly (P =0.02) on the third
day after saline injection, likely due to residual edema
from the high-volume injection, but remained un-
changed (day 7 animals trended towards a 1.7-fold
Luciferase

ice were injected with pcDNA-mKATE (top) or pcDNA-mKATE and
on filters is shown in the left column, and after D-luciferin injection in
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Figure 4 Quantification of miR-206 reporter activity in mdx4cv mice. (A) miR-206 expression measured in the gastrocnemius muscles of
3 month-old mdx4cv animals in comparison to C57Bl/6. miR-206 expression is normalized to sno202 ( n = 4 animals/group), mean values are
displayed; error bars = standard error of the mean (SEM), *P ≤0.05. (B) Bioluminescent imaging of mdx4cv animals showing CBG99 luciferase and
mKATE expression. Left hindlimbs were co-injected with pCBG99-2x-miR-206 and pcDNA-mKATE, and right hindlimbs were co-injected with
pCBG99-Control and pcDNA-mKATE. (C) Region of interest (ROI) analysis of (B). The same region size was used for all animals (n= 4 animals/group;
mean values are displayed; error bars = SEM, *P≤0.05.
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increase, P = 0.051) on subsequent days (Figure 1B). Con-
versely, barium chloride injury strongly induced miR-206
approximately 11-fold (P = 0.0003) as previously reported
[13], suggesting that HLV injection does not activate a
widespread program of muscle regeneration.

Reporter expression is well distributed and is quantifiable
using in vivo imaging
To test the muscle distribution of reporter pDNA, we
next injected C57Bl/6 mice with 100 μg/animal of
pCMV-eGFP. After 7 days, we performed immunofluor-
escence on fixed cryosections and found that GFP ex-
pression was visible in the sarcoplasm of myofibers in
the gastrocnemius, soleus, and TA muscles (Figure 2).
To determine injection efficiency, we quantified GFP-
positive myofibers and found that 7.7%, 15.9% and 6.1%
of fibers in the soleus, gastrocnemius, and TA, respect-
ively, expressed the reporter. We also observed an ab-
sence of centrally located nuclei in GFP-positive
myofibers, further supporting the finding that HLV in-
jection itself causes minimal muscle injury. Next, we
tested whether reporter gene expression can be quanti-
fied from both bioluminescent and fluorescent reporters
using in vivo imaging. To this end, we injected either
100 μg each of pCBG99-Luc-Control and pcDNA-
mKATE, or pcDNA-mKATE alone into the right
hindlimbs of C57Bl/6 mice and collected images 7 days
GFP         Desmin      DAPI

mdx4cv

Figure 5 Reporter expression in regenerating mdx4cv fibers. pCMV-eG
gastrocnemius sections showing desmin immunostaining (red), green fluor
phenylindole (DAPI) (blue) demonstrate GFP expression in regenerating fib
with 20× objective. Scale bars = 100 μm.
later using BLI. The signal was easily visible and local-
ized to the hindlimb skeletal muscle for both reporters,
although mKATE background signal was frequently ob-
served from the ventilation nosepiece and/or the distal
parts of the hindlimb (Figure 3). We also found that
mKATE fluorescence did not bleed into the luciferase
channel, making it ideal for in vivo use in combination
with CBG99-luciferase.

miRNA activity measurements are consistent with miRNA
qRT-PCR measurements
In order to measure miRNA activity in vivo, we inserted
two perfectly complementary miRNA binding sites down-
stream of the CBG99 luciferase coding sequence, creating
pCBG99-2x-miR-206. We next co-injected 100 μg of
pcDNA-mKATE along with either pCBG99-2x-miR-206
(left hindlimbs) or pCBG99-Luc-Control (right hindlimbs)
into C57Bl/6 or dystrophic mdx4cv mice. Seven days later,
we measured the signal using in vivo BLI followed by ROI
analysis (Figure 4B). To ensure that we minimized the ef-
fect of differential plasmid distribution and injection effi-
ciency, the same region size was used for quantification in
all animals, and the luciferase signal was normalized to
mKATE. After normalizing, the CBG99:mKATE ratio
from left hindlimbs was compared to control right
hindlimbs. In agreement with a 5-fold increase in miR-206
expression in mdx4cv animals by qRT-PCR (P = 0.0001)
GFP       Desmin     DAPI

C57Bl/6

FP-injected mdx4cv (left column) and C57Bl/6 (right column)
escent protein (GFP) epifluorescence (green), and 4′,6-diamidino-2-
ers. Upper row images were taken using 10× objective lens, lower row
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(Figure 4A), the normalized bioluminescent signal in
the left hindlimbs of mdx4cv mice was reduced 3.3-fold
(P = 0.02) (Figure 2C). While the decreased average signal
in C57Bl/6 did not reach significance (P = 0.15), the down-
ward trend is likely due to the high abundance of miR-206
in skeletal muscle, and the decreased miR-206 reporter
signal in mdx4cv animals is due to increased miR-206 ex-
pression. Given that miR-206 is highly expressed in the re-
generating fibers of dystrophic mice [13], this result
suggests that pDNA injected using HLV is also expressed
in these fibers. To test this, we injected mdx4cv animals
with 100 μg of pCMV-eGFP and collected tissues for im-
munofluorescence 7 days later. As expected, we found
GFP expression in small, desmin-positive, regenerating
myofibers with centrally located nuclei (Figure 5, arrow-
heads), indicating that the decrease in luciferase signal
measured using BLI likely corresponds to a loss of lucifer-
ase activity in these fibers.

Discussion
Several groups have reported the safety and efficacy of
pDNA injections using HLV for gene therapy approaches
[23,28,29]. We found this technique also to be useful in
studies requiring minimally damaging introduction of
genetically encoded reporters into skeletal muscle and
have used it in combination with BLI and ROI analysis
to analyze Myh7b promoter activity in vivo [40]. We also
found that this technique induces minimal muscle re-
generation as assessed by miR-206 induction, and to our
knowledge this is the first report of using an in vivo
transfection method that does not induce myofiber re-
generation for luciferase reporter studies.
The distribution of GFP-positive myofibers after HLV

injection that we have seen is similar to that reported by
Wooddell, et al. [41] although the percentage of
transfected fibers we report is lower. This may be due to
decreased sensitivity of detecting a fluorescent reporter
(GFP) versus a colorimetric stain (β-galactosidase). Simi-
lar to this report, we find the highest percentage (15.9%)
of transfected myofibers in the posterior lower leg
(gastrocnemius) muscles and the lowest percentage
(6.1%) in the anterior lower leg (TA) muscles (Figure 3).
Additionally, others have observed reporter gene expres-
sion up to 49 weeks after HLV injection [41], suggesting
that this method could be used for longer-term regula-
tory studies, provided that the luciferase and mKATE
signals follow similar expression profiles.

Conclusion
In summary, HLV injection of pDNA reporters into skel-
etal muscle followed by BLI is a useful technique for
studies of gene regulation. Here, we show that it is pos-
sible to measure miRNA activity in myofibers in situ,
without activation of a regeneration response. This
technique has the added benefit of reducing the cost as-
sociated with producing transgenic animals for skeletal
muscle studies, and will likely allow reduced animal
numbers and decreased variability in future experiments
by enabling longitudinal studies of the same animal
cohort.
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