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Absence of γ-sarcoglycan alters the response of
p70S6 kinase to mechanical perturbation in
murine skeletal muscle
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Abstract

Background: The dystrophin glycoprotein complex (DGC) is located at the sarcolemma of muscle fibers, providing
structural integrity. Mutations in and loss of DGC proteins cause a spectrum of muscular dystrophies. When only
the sarcoglycan subcomplex is absent, muscles display severe myofiber degeneration, but little susceptibility to
contractile damage, suggesting that disease occurs not by structural deficits but through aberrant signaling,
namely, loss of normal mechanotransduction signaling through the sarcoglycan complex. We extended our
previous studies on mechanosensitive, γ-sarcoglycan-dependent ERK1/2 phosphorylation, to determine whether
additional pathways are altered with the loss of γ-sarcoglycan.
Methods: We examined mechanotransduction in the presence and absence of γ-sarcoglycan, using C2C12
myotubes, and primary cultures and isolated muscles from C57Bl/6 (C57) and γ-sarcoglycan-null (γ-SG-/-) mice. All
were subjected to cyclic passive stretch. Signaling protein phosphorylation was determined by immunoblotting
of lysates from stretched and non-stretched samples. Calcium dependence was assessed by maintaining
muscles in calcium-free or tetracaine-supplemented Ringer’s solution. Dependence on mTOR was determined
by stretching isolated muscles in the presence or absence of rapamycin.

Results: C2C12 myotube stretch caused a robust increase in P-p70S6K, but decreased P-FAK and P-ERK2. Neither
Akt nor ERK1 were responsive to passive stretch. Similar but non-significant trends were observed in C57 primary
cultures in response to stretch, and γ-SG-/- cultures displayed no p70S6K response. In contrast, in isolated muscles,
p70S6K was mechanically responsive. Basal p70S6K activation was elevated in muscles of γ-SG-/- mice, in a
calcium-independent manner. p70S6K activation increased with stretch in both C57 and γ-SG-/- isolated muscles,
and was sustained in γ-SG-/- muscles, unlike the transient response in C57 muscles. Rapamycin treatment blocked
all of p70S6K activation in stretched C57 muscles, and reduced downstream S6RP phosphorylation. However, even
though rapamycin treatment decreased p70S6K activation in stretched γ-SG-/- muscles, S6RP phosphorylation remained
elevated.

Conclusions: p70S6K is an important component of γ-sarcoglycan-dependent mechanotransduction in skeletal
muscle. Our results suggest that loss of γ-sarcoglycan uncouples the response of p70S6K to stretch and implies
that γ-sarcoglycan is important for inactivation of this pathway. Overall, we assert that altered load-sensing
mechanisms exist in muscular dystrophies where the sarcoglycans are absent.
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Background
The dystrophin glycoprotein complex (DGC) is found at
the sarcolemma of skeletal, cardiac, and smooth muscle
cells, where it physically links the extracellular matrix
(ECM) with the intracellular cytoskeleton, providing struc-
tural support [1-3]. Mutations in DGC components cause
different types of muscular dystrophy; for example, muta-
tions in dystrophin cause Duchenne muscular dystrophy
(DMD), while mutations in α-, β-, γ-, or δ-sarcoglycan
(SG) cause limb girdle muscular dystrophy (LGMD) [2-4].
When dystrophin is mutated in DMD or in the mdx
mouse model of DMD, the entire DGC is substantially
reduced at the sarcolemma. In contrast, when any one of
the SGs is mutated, in LGMD or any of the SG knock-out
mice, the other three SGs are either absent or reduced at
the sarcolemma, but the rest of the DGC remains, includ-
ing the link formed by dystrophin and dystroglycan be-
tween the ECM and the cytoskeleton [2,3,5,6]. Unlike the
skeletal muscles of the mdx mouse, muscles of the γ-SG
knock-out (γ-SG-/-) mouse display no mechanical fragility,
at least until 4 months of age, as shown by a minimal loss
of force-generating capacity following a series of eccentric
contractions (ECCs) [7,8]. In spite of this, the γ-SG-/-

mouse exhibits a severe dystrophic phenotype on histo-
logical examination, with extensive myofiber degeneration
and regeneration, fibrosis, and disruption of sarcolemmal
integrity, similar to the mdx mouse [9]. The lack of
mechanical fragility suggests that aberrant signaling
may contribute to the muscle degeneration seen in the
γ-SG-/- mouse. Indeed, our previous studies demon-
strated that localization of the SG complex to the sarco-
lemma and phosphorylation of the tyrosine 6 residue of
γ-SG are essential for normal signaling by extracellular
signal-regulated kinases 1 and 2 (ERK1/2), in response
to ECCs [10,11]. Based upon these data, we have
asserted that the SG complex acts as a mechanosensor
in skeletal muscle because of its position within the
DGC, the modifications that occur to γ-SG with mech-
anical perturbation, and the necessity of the complex
for normal signaling.
A complication of using ECCs to invoke signal transduc-

tion is that there are multiple processes in play. Not only is
there externally applied tension on the sarcolemma and
DGC as a result of lengthening, but also active contraction
resulting in internally applied tension and Ca2+ flux within
the fibers and across the sarcolemma, all of which could
contribute to alterations in signaling in the absence of
γ-SG. Calcium is known to be involved in many mechano-
sensitive signaling pathways (reviewed in [12,13]) and aber-
rant calcium regulation is a feature of SG-deficient muscle
[14-22]. Indeed, an exaggerated ERK1/2 response to mech-
anical stimulation that is dependent on extracellular cal-
cium has been demonstrated in the mdx mouse diaphragm
[23]. Studies suggest that aberrant calcium regulation in
the muscular dystrophies results from abnormal levels and
activity of the mechanosensitive TRP channels and/or mis-
regulation of store operated calcium entry via the STIM1
and Orai1 channels [24-29]. Direct disruption of the sarco-
lemma, for which there is evidence in SG-null animal
models [7,9,30,31], could also contribute to loss of calcium
homeostasis. Furthermore, several strategies to improve
Ca2+ handling are known to counteract the pathology as-
sociated with the muscular dystrophies [25,32-34]. There-
fore, identification of mechanosensitive signaling that is
attributable to the SG complex rather than other pro-
cesses occurring during mechanical perturbation has been
challenging.
One pathway of interest involves p70S6K, which is ca-

nonically activated in response to mitogens via the phos-
phoinositide 3-kinase (PI3K) pathway (reviewed in [35])
and is known to respond to mechanical load [36]. Acti-
vation of p70S6K involves a hierarchical series of phos-
phorylation events, beginning with phosphorylation of
multiple sites in the C-terminal autoinhibitory domain,
followed by mammalian target of rapamycin (mTOR)-
dependent phosphorylation of sites in the linker region,
which allows for full activation of the kinase via phos-
phorylation of threonine 229 (T229) in the catalytic do-
main by phosphoinositide-dependent kinase 1 (PDK1)
(reviewed in [37]). Although phosphorylation of T229 is
required for p70S6K activation, phosphorylation of T389
in the linker region has been found to correlate most
closely with in vivo activity [38], and can be used as a
measure of kinase activation. p70S6K has a multitude of
downstream targets, with roles in protein synthesis,
growth, proliferation, survival, and more [35], including
S6 ribosomal protein (S6RP), which closely correlates
with protein translation rates [39].
In the current study, we examined ERK1/2, Akt, focal

adhesion kinase (FAK), and p70S6K responses to passive
stretch in C57 and γ-SG-/- skeletal muscle to further eluci-
date the importance of the SG complex for mechanotrans-
duction. While differences in ERK1/2 phosphorylation
between C57 and γ-SG-/- muscle were calcium-dependent,
differences in p70S6K activation were independent of cal-
cium. In addition, the p70S6K response to stretch in both
primary myofiber cultures and isolated extensor digitorum
longus (EDL) muscles was differentially regulated in the
absence of γ-SG. Specifically, experiments in isolated
muscles suggest that γ-SG is required for inactivation of
p70S6K. The findings increase our understanding of the
contribution of aberrant load-sensing to the pathology of
muscular dystrophies where the SG complex is deficient.

Methods
Animals
Adult C57BL/6 (C57) and γ-SG-null (γ-SG-/-) mice were
used. For ex vivo protocols, mice were aged 8 to 16 weeks.
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The γ-SG-/- mouse lacks γ-SG due to gene targeting,
resulting in an additional loss of β- and δ-SG and a de-
crease of α-SG [9]. All experiments were approved by the
University of Pennsylvania Institutional Animal Care and
Use Committee.
C2C12 myotube culture
Flexible silicone membranes (Specialty Manufacturing,
Inc.) were stretched across the bottom of custom cylinders
which acted as a culture chamber. The membranes were
held in place using an O-ring as described previously [40].
Membranes were then coated with a thin layer of 2 mg/mL
GFR Matrigel (BD #354230). C2C12 myoblasts (3.5 × 105/
cylinder) were seeded onto the membranes and maintained
at 5% CO2 at 37°C in growth media (10% FBS, 100 U
penicillin, 100 μg streptomycin, 100 μg/mL gentamycin
in DMEM) for approximately 24 h until 70% to 80%
confluent, then switched to differentiation media (2%
HS, 100 U penicillin, 100 μg streptomycin, 100 μg/mL
Gentamycin in DMEM). Myoblasts were allowed to
differentiate into multinucleated myotubes for 5 days,
during which media was changed every other day before
stretching as described below.
Primary myoblast culture
Mice were euthanized using CO2 inhalation. Flexor digi-
torum brevis (FDB) muscles were dissected and incu-
bated with 2 mg/mL collagenase I (Sigma), 10% FBS in
Tyrode’s solution (125 mM NaCl, 5 mM KCl, 1 mM
CaCl2, 1 mM MgCl2, 1 mM KH2PO4, 20 mM HEPES
(all from Fisher), 5.5 mM glucose (Sigma), pH 7.4) for
90 min at 37°C, with shaking, as previously described
[41]. Muscles were washed in 10% FBS in Tyrode’s solu-
tion and clumps of fibers were liberated by pipetting up
and down in 10% FBS, 100 U penicillin, 100 μg strepto-
mycin in Tyrode’s solution using a wide-mouthed glass
pipette. Clumps of fibers were transferred to a second
dish with the same solution and pipetted up and down
again. Single fibers were transferred to a third dish be-
fore plating on silicone membranes coated with Matrigel
(Becton Dickinson; 2 mg/mL diluted in DMEM). Growth
media (20% FBS, 10 ng/mL mouse basic fibroblast growth
factor (MP Bio), 100 U penicillin, 100 μg streptomycin,
1 μg/mL Fungizone, 100 μg/mL Gentamycin in Ham’s
F-10 media) was carefully added and cultures were incu-
bated without disturbance for 3 days at 37°C. Media was
then changed every 2 days. After 7 to 10 days, when myo-
blast cultures were 70% to 80% confluent, media was
switched to differentiation media (10% HS, 0.5% chicken
embryo extract, 100 U penicillin, 100 μg streptomycin,
1 μg/mL Fungizone, 100 μg/mL Gentamycin in DMEM)
and myoblasts were allowed to differentiate into multinu-
cleated myotubes for 5 days before stretching as described
below. Unless otherwise indicated, all cell culture reagents
were purchased from Gibco.

Myotube stretching protocol
C2C12 myotubes were stretched using an apparatus that
produces isotropic two-dimensional strain of cells in vitro,
as described previously [40]. Briefly, myotubes were sub-
jected to 10% strain, 40 times per minute, for 30 min, at
37°C in a humidified atmosphere of 5% CO2 in air. Control
myotubes were treated identically but were not stretched.
Lysates were harvested immediately as described below.
Primary myotubes were stretched using the protocol
described for C2C12 myotubes. Stretched myotubes were
then incubated without stretch for a further 1, 2, or 4 h at
37°C before harvesting lysates for immunoblotting as
described below. Control (non-stretched) myotubes were
harvested immediately after the end of the stretching
protocol used for the stretched myotubes.

Isolated muscle stretching protocol
Mice were anaesthetized using ketamine and xylazine. EDL
muscles were dissected and placed in an organ bath
containing oxygenated high-glucose (25 mM) DMEM with
HEPES (25 mM) (Life Technologies), at room temperature.
For rapamycin sensitivity experiments, high-glucose DMEM
was supplemented with 150 nM rapamycin (Sigma) or ve-
hicle only (0.1% DMSO). Muscles were adjusted to 9.3 mN
of resting tension, approximately equivalent to optimal
length, based on our previous experiments [42]. After a
10-min equilibration period, the length of the muscle was
measured using calipers, and the muscle was subjected to
a stretching protocol of 15% strain (held for 100 ms with
ramp times of 50 ms), 20 times per minute, for either 30
or 90 min, using an in vitro muscle test system (Aurora
Scientific). Muscles were snap-frozen immediately follow-
ing the end of the stretch protocol. Contralateral muscles
were used as controls and were adjusted to the same length
as the stretched muscles, then incubated in oxygenated
high-glucose DMEM with HEPES at room temperature for
the equivalent length of time, before snap-freezing.

Calcium dependence experiments
EDL muscles were dissected as described above and
placed in an organ bath contained oxygenated Ringer’s
solution (119 mM NaCl, 4.74 mM KCl, 2.54 mM CaCl2,
1.18 mM KH2PO4, 1.18 mM MgSO4, 25 mM HEPES,
2.75 mM glucose), calcium-free Ringer’s solution (CaCl2
replaced with 2.5 mM MgCl2) or Ringer’s solution sup-
plemented with 100 μM tetracaine. They were incubated
for 30 min before snap-freezing in liquid nitrogen.

Immunoprecipitation
Immunoprecipitation experiments were carried out using
the Pierce Classic IP kit (Thermo Scientific). Muscle lysates
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containing 100 μg total protein was immunoprecipitated
with anti-P-tyrosine (Cell Signaling #9411 1:100) overnight
at 4°C with end-over-end mixing. Samples were purified
using Protein A/G Plus Agarose beads (Roche) for 1 h
at 4°C with end-over-end mixing. The immune complex
was eluted with non-reducing sample buffer and boiled
at 100°C for 5 min before being applied to a SDS-PAGE
gel, transferred, and immunoblotted as described below.

Immunoblotting
C2C12 and primary myotubes were washed with ice-cold
PBS before lysing in 100 to 200 μL of RIPA buffer (50 mM
HEPES pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM EGTA,
15 mM p-nitrophenyl phosphate disodium hexahydral, 1%
NP-40, 0.1% SDS, 1% deoxycholate, 0.025% sodium azide)
with protease and phosphatase inhibitor cocktails (Sigma).
Lysates were incubated on ice for 30 min, centrifuged at
16,000 rcf for 20 min at 4°C and the supernatants retained.
EDL muscles were ground using a dry ice-cooled pestle
and mortar, and lysed in 200 μL of RIPA buffer with prote-
ase and phosphatase inhibitors. Lysates were incubated on
ice for 1 h, vortexing half-way through, centrifuged at
16,000 rcf for 20 min at 4°C and the supernatants retained.
Protein content was determined using a Bradford method
protein assay kit (Bio-Rad). Lysates (30 μg total protein for
myotube cultures, 90 μg total protein for EDL muscles)
were separated by SDS-PAGE on Tris-HCl polyacrylamide
gels (Bio-Rad) and transferred to PVDF membranes.
Membranes were blocked in 5% milk in TTBS (10 mM
Tris, 150 mM NaCl, 0.1% v/v Tween-20, pH 8), with 2%
BSA added for some antibodies, then probed with
antibodies to the following: phospho (P)-p70S6K (T389)
(Cell Signaling #9205 1:200 for primary cultures, Cell
Signaling #9234 1:250 for isolated muscles), P-p70S6K
(T421/S424) (Cell Signaling #9204 1:1,000), P-S6RP (Cell
Signaling #2211 1:2,000), P-ERK1/2 (Cell Signaling #9101
1:500), total (T)-ERK1/2 (Cell Signaling #9107 1:1,000),
P-Akt (Cell Signaling #9271 1:300), T-Akt (Cell Sig-
naling #2920 1:2,000), P-FAK (Millipore 05-1140, 1:500),
T-FAK (Millipore 06-543, 1:1,000), γ-SG (Novocastra
VP-G803 1:300), glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (Santa Cruz sc-32233 1:5,000), and tubulin
(Sigma T5168 1:20,000). Band intensities were quantified
using ImageQuant TL, 1D gel analysis (C2C12 and myo-
tube cultures, rapamycin sensitivity experiments) or ImageJ
(NIH) (all other isolated muscles). P-p70S6K and P-S6RP
were normalized to either GAPDH or tubulin, P-FAK was
normalized to either T-FAK or GAPDH, P-Akt was normal-
ized to T-Akt, and P-ERK1/2 was normalized to T-ERK1/2.

Microscopy
Images of primary cultures were taken using a Leica DM
RBE microscope and Leica DFC300 CCD camera, using
OpenLab software (Perkin Elmer).
Statistics
Comparisons between non-stretched and stretched C2C12
cells (Figure 1) were done by unpaired T test. Comparisons
between C57 and γ-SG-/- primary cultures across time
(Figure 2) were done by two-way ANOVA with Tukey’s
multiple comparisons test. Comparisons between C57 and
γ-SG-/- muscles in calcium experiments (Figure 3) were
done by unpaired T test. Comparisons between C57 and
γ-SG-/- muscles with and without stretch for each time
point (Figure 4) or with and without rapamycin (Figure 5)
were done by two-way ANOVA with Tukey’s multiple
comparisons test.

Results
p70S6K, but not ERK1/2 or Akt responds to passive
stretch in vitro
Studies using whole muscles from animal models of the
dystrophies are made more complex by the presence of
multiple cell types, as well as pathological processes such
as fibrosis. Therefore, we initially investigated mechano-
transduction signaling in passively stretched C2C12
myotubes. We found that passive stretching in vitro did
not alter phosphorylation of ERK1 or Akt and that ERK2
and FAK phosphorylation decreased following stretch
(Figure 1A,C-F,H-I). However, we found an increase in
p70S6K phosphorylation at T389, which reflects activity,
in response to passive stretching of C2C12 myotubes
(Figure 1B,G). Therefore, this in vitro model reflected
some, but not all, stretch responses observed in muscle
in vivo [43,44], and highlighted p70S6K as a pathway of
interest. The lack of Akt phosphorylation suggests that
p70S6K phosphorylation occurred through an Akt-
independent pathway, while the lack of FAK phosphoryl-
ation supports an integrin-independent mechanism.

Differential p70S6K stretch response occurs in C57 and
γ-SG-/- primary cultures
Having established pathways of interest in vitro using the
C2C12 cell line, we used primary myoblast cultures from
C57 and γ-SG-/- mice (Figure 2A) to investigate the
changes in mechanotransduction signaling associated
solely with the loss of the SG complex in myofibers. C57
and γ-SG-/- cultures were stretched for 30 min as de-
scribed above and lysates were harvested 1, 2, or 4 h after
stretching ended, to allow observation of the signaling
time course. Immunoblotting analysis showed that there
was no difference in basal ERK1/2 phosphorylation
between C57 and γ-SG-/- myotubes and little change in
ERK1/2 phosphorylation in response to stretch (Figure 2B,
D,E). Therefore, similar to the C2C12 cells, primary
cultures did not reflect the ERK1/2 phosphorylation
responses found previously in C57 and γ-SG-/- mice
in vivo [10,11]. Neither P-Akt nor P-FAK displayed
significant differences between C57 and γ-SG-/- cultures



Figure 1 p70S6K responds to stretch in C2C12 cells. C2C12 myotubes were cultured on silicone membranes and subjected to passive
stretching for 30 min. (A-D) Representative immunoblots for P-ERK1/2, total T-ERK1/2, P-p70S6K (T389 site), tubulin, P-Akt, T-Akt, P-FAK, and T-FAK
in non-stretched (NS) and stretched (S) C2C12 cells. (E-I) Quantification of activation levels. P-ERK1 and 2 were normalized to T-ERK1 and 2,
respectively, P-p70S6K was normalized to tubulin, P-Akt was normalized to T-Akt, and P-FAK was normalized to T-FAK. n = 5-6 wells of C2C12 cells
per group. Bars represent mean ± standard error. * Significantly different from non-stretched myotubes by unpaired T test. NS, non-stretched;
S, stretched.
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(Figure 2B,F,G). Further, these proteins did not show
any prolonged response to passive stretch in the
primary cultures, consistent with the lack of an acute
positive stretch response in C2C12 cells. Examination of
p70S6K revealed a trend towards elevated T389 phos-
phorylation at baseline in γ-SG-/- myotubes, compared
to C57 myotubes. Activation of p70S6K in γ-SG-/- myo-
tubes upon stretch was not apparent (Figure 2B,C), but
C57 myotubes displayed a trend for increased activation
at 2 and 4 h after stretching (Figure 2B,C). Therefore,
while the primary cultures reflect some of the responses
found in C2C12 myotubes, the experimental system is
too variable to draw firm conclusions regarding mech-
anical signaling pathways associated with γ-SG.

Elevated P-p70S6K in γ-SG-/- muscles is calcium
independent
Our experiments in myotubes, together with our previ-
ous studies in isolated muscles [10,11], suggested that
ERK1/2 phosphorylation changes require active contrac-
tion in addition to stretch, whereas p70S6K responds to
stretch alone. To test this hypothesis in vivo, we ex-
tended our analysis to examine the response of p70S6K
to passive stretch of isolated muscles. P-p70S6k was
elevated approximately 1.7-fold in resting γ-SG-/- EDL
muscles incubated in normal oxygenated Ringer’s solu-
tion (Figure 3C; Normal). As in our previous studies,
there was a 3- and 1.5-fold increase of P-ERK1 and
P-ERK2, respectively, in resting γ-SG-/- EDL muscles
(Figure 3A-B; Normal). Because both of these pathways
converge to phosphorylate S6RP, we compared the
phosphorylation state of this protein in muscles from
both genotypes. γ-SG-/- EDL muscles exhibited an 8-fold
increase in P-S6RP, which was consistent with the higher
basal phosphorylation state of the upstream pathways
(Figure 3D; Normal).
Heightened mechanosensitive signaling could arise through

increased flux of ions across the sarcolemma, particu-
larly Ca2+ [17]. This could occur either through en-
hanced activity of channels, such as the TRP family of
cation channels (reviewed in [28,29]), or via membrane
ruptures. To determine the calcium dependence of the ob-
served differences in p70S6K and ERK1/2 phosphorylation
in γ-SG-/- muscles, we incubated muscles in calcium-free
Ringers solution, retaining the same ionic strength.
Absence of extracellular Ca2+ did not alter the relative
difference in P-p70S6K between γ-SG-/- and C57 muscles
(Figure 3C). However, the increased P-ERK1/2 and
P-S6RP found in γ-SG-/- muscles in normal Ringer’s solu-
tion was abrogated when there was no calcium in the
bathing solution (Figure 3A,B,D). Thus, only p70S6K
phosphorylation appeared to be calcium independent. Be-
cause intracellular calcium stores can also alter the intra-
cellular calcium concentration, particularly during muscle
activation, tetracaine was used to inhibit sarcoplasmic
reticulum release of Ca2+ through the ryanodine receptors.
Verification of this inhibition was established in a separate
experiment, through measuring tetanic force generation
by EDL muscles before and after addition of tetracaine.
After 15 min incubation with tetracaine, force production
was virtually eliminated (force was 297 mN prior to
addition of tetracaine, 2.4 mN after 15 min incubation
with tetracaine and not detectable after 20 min incubation
with tetracaine). Again, relative P-p70S6K levels between
the two muscle groups were not altered by tetracaine
(Figure 3C). In contrast, blockade of SR Ca2+ release
reduced P-ERK1 levels in γ-SG-/- muscles relative to C57
muscles, even though there was no alteration in P-ERK2



Figure 2 Differential p70S6K stretch response in C57 and γ-SG-/- primary cultures. Primary myotubes from C57 and γ-SG-/- FDB fibers were
cultured on silicone membranes and subjected to passive stretching for 30 min. Lysates were harvested 1, 2, or 4 h after stretch. (A) Representative
images of i, satellite cells migrating from an FDB fiber and ii, differentiated myotubes. (B) Representative immunoblot for P-p70S6K (T389 site), P- and
T-ERK1/2, P-FAK, P-Akt, T-Akt, and GAPDH in non-stretched (C) and stretched (1 h, 2 h, 4 h) primary cultures. (C-G) Quantification of activation levels.
Legend in C applies to all graphs. P-ERK1 and 2 were normalized to T-ERK1 and 2, respectively, P-Akt was normalized to T-Akt and P-p70S6K and P-FAK
were normalized to GAPDH. n = 3 (p70S6K) or 4 (all other proteins) independent sets of primary cultures per genotype. Bars represent mean ± standard
error. Statistical significance was tested by two-way ANOVA.
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(Figure 3A,B). Phosphorylation of S6RP remained elevated
in γ-SG-/- muscles in the presence of tetracaine, but to a
lesser extent than in normal Ringer’s solution (Figure 3D).
Taken together, both extracellular and intracellular cal-
cium contribute to the heightened P-ERK1 levels in
γ-SG-/- muscles, whereas the increase in basal P-p70S6K
in γ-SG-/- muscles is not dependent on either extracellular
or intracellular calcium.

Differential p70S6K stretch response occurs in isolated
C57 and γ-SG-/- muscles
Having established that P-p70S6K changes at rest did not
depend on calcium, we pursued the role of p70S6K in
γ-SG-dependent mechanotransduction in vivo. A passive
stretching protocol comprised of a 15% strain, 20 times
per min, for 30 min in high-glucose DMEM was sufficient
to cause increased γ-SG phosphorylation in the EDL, as is
the case for eccentric contraction of the EDL (Figure 4A;
[10]). We stretched C57 and γ-SG-/- EDL muscles for
either 30 or 90 min and immediately snap-froze them in
liquid nitrogen. We then used immunoblotting to meas-
ure phosphorylation of p70S6K at T389, as above, and also
at T421/S424 in the auto-inhibitory domain. Basal phos-
phorylation of p70S6K at T389 showed a trend to be in-
creased in unstretched γ-SG-/- muscles compared to C57
muscles (Figure 4B,C). However, basal phosphorylation at



Figure 3 Elevated p70S6K in γ-SG-/- muscles is independent of calcium. EDL muscles from C57 and γ-SG-/- mice were maintained in normal
oxygenated Ringer’s solution, calcium-free oxygenated Ringer’s solution or oxygenated Ringer’s solution supplemented with tetracaine for 30 min.
(A-D) Representative immunoblots and quantification for P-ERK1 (A), P-ERK2 (B), P-p70S6K (T389 site; C), and P-S6RP (D). Legend in A applies to all
graphs. P-ERK 1 and 2 were normalized to T-ERK 1 and 2, respectively; P-p70S6K and P-S6RP were normalized to tubulin. Independent immunoblots
were performed for each condition and γ-SG-/- activation levels were normalized to C57 activation levels in each case. n = 3 muscles per genotype
and condition. Bars represent mean ± standard error. All datasets were tested by unpaired T test. * Significantly different from C57 by unpaired T test.
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T421/S424 was not different between C57 and γ-SG-/-

muscles (Figure 4D). After 30 min of stretch, phosphoryl-
ation of p70S6K at T389 and T421/S424 was increased to
a similar degree in stretched C57 and γ-SG-/- EDL mus-
cles, compared to non-stretched controls. However, after
90 min of stretch, phosphorylation at T389 and T421/
S424 had decreased in stretched C57 muscles and was
close to non-stretched levels. In contrast, phosphorylation
at T389 was further increased, and T421/S424 phosphor-
ylation remained elevated, in stretched γ-SG-/- muscles,
compared to non-stretched controls (Figure 4B-D). For
T389 phosphorylation after 90 min of stretch, genotype,
stretch, and the interaction between them were all statisti-
cally significant, by two-way ANOVA. T421/S424 showed
a similar trend to T389; however, while the effect of
stretch was statistically significant, the difference between
genotypes was not. Thus, in contrast to primary cultures,
γ-SG-/- muscles exhibited heightened and prolonged
activation of p70S6K in response to passive stretch, imply-
ing that γ-SG plays a role in p70S6K inactivation.

Stretch response of p70S6K T389, but not S6RP, is
rapamycin-sensitive in γ-SG-/- muscles
Because mTOR is a key mediator of p70S6K activation,
we examined the effect of the mTOR inhibitor rapamycin
on stretch responses in isolated C57 and γ-SG-/- muscles.
EDL muscles were subjected to cyclic stretch for 90 min,
as described above. Unlike in C2C12 cells and primary
cultures, P-Akt showed a trend to increase on stretching,
which was statistically significant in γ-SG-/- muscles.
As anticipated, P-Akt was unaffected by rapamycin
(Figure 5A,B). Rapamycin treatment completely blocked the
increase in p70S6K T389 phosphorylation after passive
stretch of C57 muscles, consistent with previous studies
[36,37]. In γ-SG-/- muscles, rapamycin abrogated most
p70S6K T389 phosphorylation, but residual phosphorylation



Figure 4 Differential p70S6K stretch response in isolated C57
and γ-SG-/- muscles. EDL muscles from C57 and γ-SG-/- mice were
maintained in oxygenated high glucose DMEM and subjected to
passive stretching for 30 or 90 min. (A) Immunoblot of γ-SG following
immunoprecipitation with anti-P-Tyr or lysate only, showing γ-SG
phosphorylation in response to 30 min of stretch. (B) Representative
immunoblots of P-p70S6K (T389 and T421/S424 sites) and tubulin.
(C, D) Quantification of P-p70S6K T389 (C) and T421/S424
(D), normalized to tubulin. Samples for each time point were run
on separate immunoblots and normalized to C57 NS. n = 3-5
muscles per genotype, condition, and time point. Bars represent
mean ± standard error. All datasets were tested by two-way ANOVA.
Stretch was statistically significant for T421/S424 after 30 min of
stretch; genotype, stretch, and the interaction between them were
statistically significant T389 after 90 min of stretch, by two-way
ANOVA. *Significantly different from C57 S at 90 min by two-way
ANOVA with Tukey’s multiple comparisons test. NS, non-stretched;
S, stretched.
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remained in stretched muscles (Figure 5A,C). T421/S424
showed a trend to increase in response to stretch in both
C57 and γ-SG-/- muscles. Surprisingly, rapamycin blunted
the p70S6K T421/S424 stretch response in C57 muscles,
which is inconsistent with previous studies [36]. However,
the T421/S424 response to stretch persisted in γ-SG-/-

muscles in the presence of rapamycin (Figure 5A,D).
S6RP phosphorylation increased in response to stretch
in both C57 and γ-SG-/- muscles. Interestingly, while
rapamycin blocked stretch-induced phosphorylation of
S6RP in C57 muscles, phosphorylation in response to
stretch was preserved in γ-SG-/- muscles (Figure 5A,E).
Taken together, these results suggest either that the level
of active p70S6K remaining in γ-SG-/- muscles is suffi-
cient to phosphorylate S6RP regardless of rapamycin or
that an alternate pathway bypasses p70S6K to phos-
phorylate S6RP in muscles lacking γ-SG.

Discussion
Skeletal muscle has a remarkable ability to adapt to
changes in workload. Almost all muscle properties can
be modulated, such as muscle fiber size, contractile
properties and metabolism. Changes in patterns of gene
expression as well as shifts in the balance between pro-
tein synthesis and degradation are required to complete
the adaptational response. Identification of major path-
ways that directly regulate gene expression and protein
synthesis/degradation demonstrate that multiple inputs
(mechanical, chemical, and metabolic) can converge
on final common pathways for muscle growth and
adaptation (reviewed in [45]). However, sorting out the
contribution of the wide variety of inputs on muscle
adaptation has been more difficult. In our previous
work, we used an eccentric contraction protocol to in-
vestigate the dependence of ERK1/2 mechano-sensing
on phosphorylation of γ-SG. However, this protocol
alters multiple factors, including externally applied
tension, internally generated tension and changes in
extracellular and intracellular calcium fluxes, all of
which potentially have effects on mechanosensitive
signaling pathways. In the present study, we used a
passive stretching protocol to isolate the effects of ex-
ternally applied tension in the absence of active contrac-
tion, in order to examine the downstream signaling in
more detail.
Passive stretching protocols can be performed in both

cell cultures and whole muscle preparations, and the
reductionist approach of utilizing cultures can eliminate
some of the physiological complexities associated with
intact or isolated muscles. As such, our initial experi-
ments using C2C12 cells were key to identifying p70S6K
as being activated in response to stretch, in contrast to
the lack of response by ERK1/2, Akt, or FAK. Primary
myotubes generated from C57 or γ-SG-/- mice had the



Figure 5 Stretch response of p70S6K T389, but not S6RP, is
rapamycin-sensitive in γ-SG-/- muscles. EDL muscles from C57
and γ-SG-/- mice were maintained in oxygenated high glucose
DMEM supplemented with or without rapamycin and subjected to
passive stretching for 90 min. (A) Representative immunoblots of
P-Akt, T-Akt, P-p70S6K (T389 and T421/S424 sites), P-S6RP, and
tubulin. Left panels DMEM alone; right panels DMEM + rapamycin.
(B-E) Quantification of P-Akt (B), P-p70S6K T389 (C), P-p70S6K T421/
S424 (D), and P-S6RP (E). Legend in B applies to all graphs. P-Akt
was normalized to T-Akt; all other proteins were normalized to
tubulin. n = 2-3 muscles per genotype and condition. Bars represent
mean ± standard error. All datasets were tested by two-way ANOVA.
For P-Akt in γ-SG-/- muscles, stretch was significant. For P-p70S6K
T389 in γ-SG-/- muscles, stretch, rapamycin treatment, and the
interaction between them were all significant. For P-S6RP in γ-SG-/-

muscles, stretch was significant. ‡Significantly different to NS γ-SG-/-

control and †significantly different to S γ-SG-/- without rapamycin
by two-way ANOVA with Tukey’s multiple comparisons test. NS,
non-stretched; S, stretched.
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distinct advantage of efficient germline elimination of
γ-SG combined with an in vitro culture system. Even
though these experiments displayed trends towards differ-
ential activation of p70S6K after stretch, the inherent
variability of the preparation impaired identification of
signaling patterns that were dependent upon either stretch
or γ-SG. Thus, we returned to isolated muscles from C57
and γ-SG-/- mice to investigate γ-SG-dependent mechano-
transduction pathways. Using this model, we observed a
modest increase of P-p70S6K in γ-SG-/- muscles at rest
that was independent of intra- or extracellular calcium,
and a prolonged activation of p70S6K following stretch.
These results support a role for γ-SG in particular, or the
SG complex in general, in mechanical signal transduction,
where the loss of this protein leads to an increase in
activation, and deficit in deactivation, or a combination of
both. Given the dependence of our findings on the experi-
mental platform utilized, future directions will include
verification of the results in an even more intact system,
such as in situ muscle preparations or whole animals.
An intriguing explanation for our in vivo results is that

γ-SG is required for dephosphorylation and deactivation
of p70S6K. There is considerable evidence that p70S6K
is directly dephosphorylated by protein phosphatase 2A
(PP2A), independently of mTOR [46-49]. The phosphat-
ase PHLPP has also been shown to target p70S6K [50].
γ-SG may mediate the activation of these phosphatases
in response to sustained mechanical stimulation. Alter-
natively, γ-SG may regulate pathways that deactivate
p70S6K indirectly. For example, the phosphatase SHP-2
can cause mTOR-dependent dephosphorylation of p70S6K
[51,52]. Further studies will be required to define the inacti-
vation pathway disrupted by γ-SG loss.
Passive stretch eliminates the contribution of active con-

traction or SR calcium fluxes, but does not eliminate the
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effects of extracellular Ca2+ fluxes through mechanically
sensitive channels. Further, as previously shown, passive
stretch causes greater Ca2+ influx into myotubes lacking
members of the SG complex [17], raising the possibility
that the mechanical signal transduction pathways we eval-
uated previously may be modulated not only by the SG
complex, but also by additional channels in the sarco-
lemma. To address this, we examined the contribution
of calcium to the elevated p70S6K and ERK1/2 activity
found in γ-SG-/- muscles. We found that the elevation of
P-ERK1/2 in the absence of γ-SG was dependent on both
internal and external sources of calcium. In contrast, the
difference in basal P-p70S6K between C57 and γ-SG-/-

muscles was not calcium dependent. This suggests that
while ERK1/2 activation may lie downstream of the cal-
cium misregulation that occurs in SG-deficient muscle,
changes in p70S6K activation may be a more direct conse-
quence of the absence of the SG complex. This is of great
interest given that γ-SG has been shown to be important
for mechanotransduction, but the downstream signaling
pathways are uncharacterized [10,11]. Furthermore, p70S6K
has been implicated in mechanotransduction in skeletal
muscle, but the upstream initiation signals are not
known [36,53-55]. However, it should be noted that
SG-deficient muscle undergoes substantial degeneration
and subsequent regeneration, which may also explain
the elevated basal p70S6K, which is transiently increased
during regeneration [56].
Our study found that the pattern of differential p70S6K

phosphorylation in response to stretch in γ-SG-/- muscles
was similar both for phosphorylation of T389, which cor-
relates with kinase activity, and for T421/S424, two of the
four phosphorylation sites in the autoinhibitory domain.
Phosphorylation of T389 is mTOR-dependent, while
phosphorylation of the autoinhibitory domain is carried
out by proline-directed kinases. Furthermore, it is thought
that phosphorylation of the autoinhibitory domain is ne-
cessary for phosphorylation of T389 [37]. The correlation
between phosphorylation of T421/S424 and T389 in our
isolated muscle model therefore suggests that phosphoryl-
ation of the autoinhibitory domain was the rate-limiting
step for p70S6K activation, an intriguing prospect given
that the autoinhibitory domain may be targeted by ERK1/
2 [57]. Therefore, a future hypothesis to test is that differ-
ential p70S6K activation is a downstream consequence
of differential ERK1/2 activation in γ-SG-/- muscle. This
would implicate Ca2+ as an indirect modulator of p70S6K
activity, since the increase in P-ERK1/2 in γ-SG-/- muscle
is dependent upon heightened Ca2+ flux. It is worth noting
that recent work by others has shown that stretch-
induced activation of mTOR and p70S6K at T389 is inde-
pendent of ERK1/2 [54], which can regulate mTOR via
tuberous sclerosis proteins 1 and 2 and Raptor [58-60].
However, this pathway is separate from the putative direct
phosphorylation of the p70S6K T421/S424 autoinhibitory
domain sites by ERK1/2.
Our experiments with rapamycin showed that, for both

C57 and γ-SG-/- muscles, phosphorylation of p70S6K at
T389 is mTOR-dependent, consistent with previous stud-
ies [36,37]. The T421/S424 autoinhibitory domain sites
were phosphorylated in response to stretch in both C57
and γ-SG-/- muscles, which was different to our initial
experiment in stretched isolated muscles, where the C57
response had diminished by 90 min of stretching. How-
ever, in the presence of rapamycin, this response was
not present. This is surprising given that the T421/S424
sites are not thought to be targeted by mTOR. Previous
studies have shown these sites to be rapamycin-insensitive
[36], but recent evidence suggests a modest mTOR de-
pendence [61]. In γ-SG-/- muscles, rapamycin had no ef-
fect on T421/S424 phosphorylation. Further experiments
are needed to fully understand the role of mTOR on phos-
phorylation of the p70S6K autoinhibitory domain in C57
and γ-SG-/- skeletal muscle. Interestingly, the stretch-
induced phosphorylation of S6RP was rapamycin sensitive
in C57 muscles, but not in γ-SG-/- muscles. This suggests
that an alternative pathway can bring about S6RP phos-
phorylation in γ-SG-/- muscles when p70S6K is not acti-
vated. One possibility is that S6RP is phosphorylated by
p90 ribosomal S6 kinase, which is activated by ERK; this is
consistent with the increase in basal ERK1/2 in γ-SG-/-

muscles, and the over-response of ERK2 on mechanical
stimulation by eccentric contraction [10].
We did not observe a strong Akt response to passive

stretch, or any difference between C57 and γSG-/-, im-
plying that mTOR and/or p70S6K were being activated
through Akt-independent pathways. This is consistent
with previous studies showing that Akt does not respond
to mechanical stimulation in skeletal muscle, and that
p70S6K phosphorylation in response to stretch is inde-
pendent of PI3K [62]. We also did not see increased
phosphorylation of FAK in response to passive stretch in
C2C12 cells or primary myotubes. Although integrins can
participate in mechanotransduction, it appears that our
cyclic passive stretch protocols did not cause integrin
activation. Further studies will be needed to elucidate
the details of crosstalk between SG-dependent and
integrin-dependent signaling pathways, as well as the
role of calcium in these signaling cascades.
Based on our findings, we position γSG as a mechano-

sensor, schematized in Figure 6, that is important for tran-
sient ERK1/2 activation during active contractions, as
well as modulation of p70S6K activation during passive
stretch. Because passive stretch does not appear to in-
crease P-FAK or P-Akt, γSG is likely to regulate p70S6K
through other pathways. These may include regulation
of ERK1/2, which can promote p70S6K activation indir-
ectly via mTOR or directly by phosphorylation of the



Figure 6 Relevant signaling pathways and relationship to γ-SG.
Schematic of signaling pathways measured or discussed in this
manuscript. Dotted lines indicate possible relationships to γ-SG.
Arrowheads indicate an activating relationship, while blunt ends
indicate a repressing relationship. Dashed line indicates priming,
rather than full activation.

Moorwood et al. Skeletal Muscle 2014, 4:13 Page 11 of 13
http://www.skeletalmusclejournal.com/content/4/1/13
autoinhibitory domain, and/or phosphatases such as
PP2A that dephosphorylate p70S6K. Loss of γSG un-
couples the response to stretch, which may contribute
to muscle pathology.
The stability of the SG complex is directly affected in

several LGMDs and in DMD, and a significant part of the
pathology in these diseases appears to be inappropriate
load sensing. The first step in therapeutic development is
identifying and understanding the target, but little is cur-
rently known about the role of the SG complex in load
sensing. Therefore, understanding the functions that are
disrupted and the pathways that are involved in mechano-
transduction involving the SG complex will help in the de-
sign of therapies for LGMDs and DMD. While restoration
of a completely normal SG complex either through gene
correction or protein replacement would also normalize
mechanical signal transduction, this may not be possible
for all mutations responsible for DMD and LGMD. It is
known that localization of the SG complex is not the sole
criterion for appropriate signaling [11]. Hence, other
proteins may be necessary to correct signaling even when
the complex is restored, and downstream pathways may
emerge as more feasible therapeutic targets. We do not
know whether the enhanced basal and stretch-responsive
activation of p70S6K in γ-SG-/- muscle contributes to
pathology or compensates for it. Likewise, it is not clear
whether inhibition of p70S6K would have a beneficial or
a detrimental effect in dystrophic muscle. Muscle specific
gene targeting of mTORC1 components induces myopathy
[63,64] and overexpression of integrin α7 can improve the
dystrophic phenotype through increased survival signaling
via p70S6K [65], suggesting that p70S6K inhibition would
not be advantageous. However, treatment of mdx mice
with the mTOR inhibitor rapamycin improves the dys-
trophic phenotype [66]. It is also interesting to note that
p70S6K is inhibited by glucocorticoids, which are used in
the treatment of DMD and LGMD [67].
Our results begin to provide mechanistic insight into

how mechanical signaling is disrupted and altered in the
absence of γ-SG. In addition to increasing our under-
standing of the normal function of the SG complex,
there is potential to provide more refined targets that
could be beneficial to patients either in isolation or in
combination with other therapeutic approaches.

Conclusions
We have identified p70S6K as part of a novel SG-
dependent mechanosensitive signaling pathway in skeletal
muscle. Our results suggest that γ-SG is required for the
inactivation of p70S6K following its activation in response
to mechanical stimulation. These studies provide new
insights into the normal function of the SG complex, and
the mechanisms by which its deficiency in some forms of
muscular dystrophy may contribute to pathology.
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