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Abstract

Background: Loss-of-function mutations in the dysferlin gene (DYSF) result in a family of muscle disorders known
collectively as the dysferlinopathies. Dysferlin-deficient muscle is characterized by inflammatory foci and macrophage
infiltration with subsequent decline in muscle function. Whereas macrophages function to remove necrotic tissue in
acute injury, their prevalence in chronic myopathy is thought to inhibit resolution of muscle regeneration. Two major
classes of macrophages, classical (M1) and alternative (M2a), play distinct roles during the acute injury process.
However, their individual roles in chronic myopathy remain unclear and were explored in this study.

Methods: To test the roles of the two macrophage phenotypes on regeneration in dysferlin-deficient muscle, we
developed an in vitro co-culture model of macrophages and muscle cells. We assayed the co-cultures using ELISA

and cytokine arrays to identify secreted factors and performed transcriptome analysis of molecular networks induced in
the myoblasts.

Results: Dysferlin-deficient muscle contained an excess of M1 macrophage markers, compared with WT, and
regenerated poorly in response to toxin injury. Co-culturing macrophages with muscle cells showed that M1
macrophages inhibit muscle regeneration whereas M2a macrophages promote it, especially in dysferlin-deficient
muscle cells. Examination of soluble factors released in the co-cultures and transcriptome analysis implicated two
soluble factors in mediating the effects: IL-13 and IL-4, which during acute injury are secreted from M1 and M2a
macrophages, respectively. To test the roles of these two factors in dysferlin-deficient muscle, myoblasts were treated
with IL-4, which improved muscle differentiation, or IL-13, which inhibited it. Importantly, blockade of IL-1B signaling
significantly improved differentiation of dysferlin-deficient cells.

Conclusions: We propose that the inhibitory effects of M1 macrophages on myogenesis are mediated by IL-1(3 signals
and suppression of the M1-mediated immune response may improve muscle regeneration in dysferlin deficiency. Our
studies identify a potential therapeutic approach to promote muscle regeneration in dystrophic muscle.
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Background
A spectrum of distinct myopathies is associated with mu-
tations in the protein dysferlin [1]. The most common
manifestations include limb-girdle muscular dystrophy 2B
(LGMD2B), an autosomal recessive myopathy marked by
proximal muscle weakness, with an onset in the late teens
([2, 3], reviewed in [4]) and Myoshi myopathy, character-
ized by a progressive muscle wasting involving distal mus-
cles ([5] reviewed in [4]). In general, these myopathies
feature chronic regeneration and fibrosis [6], a selective
loss of type 2 muscle fibers and a moderate degree of in-
flammation surrounding the necrotic fibers [7], although
the severity of pathology is variable. Additionally, tissue
pathology is focal and sporadic, making dysferlinopathy a
challenging disorder to characterize, diagnose, and treat.

Dysferlin-deficient muscle is characterized by inflam-
matory foci that consist of necrotic fibers and infiltrating
immune cells. Myofibers undergoing necrosis release
danger-associated molecular patterns (DAMPs) that acti-
vate innate immune receptors resulting in release of cy-
tokines and chemokines and subsequent recruitment of
inflammatory cells that remove the necrotic debris and
facilitate muscle regeneration [8]. The primary infiltrat-
ing cells in dystrophic muscle are macrophages, which
have been studied more extensively in the mdx mouse
model of Duchenne muscular dystrophy [9].

Macrophages have been classified into two major cat-
egories: the classically activated (M1) and the alternatively
activated (M2a). M1 macrophages, identified by expres-
sion and secretion of TNFa, Cox-2, IL-1f, IL-12, and
iNOS, respond to TLR ligands such as lipopolysaccharide
(LPS) and demonstrate phagocytic and bacteriocidal activ-
ity [10]. In contrast, M2a macrophages, identified by ex-
pression of mannose receptor (Mrcl), resistin-like o
(Retnla, Fizzl), and chitinase 3-like 3 (Chi3l3, Ym1), are
activated by IL-4 or IL-13 signals that arise during Th2
immune responses and participate in wound-healing pro-
cesses (reviewed in [11, 10]). Immune cells are sequen-
tially recruited to sites of acute injury, with a wave of
neutrophils followed by M1-polarized macrophages that
phagocytose necrotic material. M2a macrophages are also
recruited at the time of M1 macrophage infiltration [12]
and remain at the site of injury as M1 macrophages trans-
differentiate to M2a macrophages in situ [13, 14], thereby
resolving the injury and promoting myoblast differenti-
ation. Studies of the macrophage populations in mdx mice
determined that M1 macrophages predominate during
early phases to be replaced by M2a macrophages during
the later regenerative/fibrotic stages of the disease [15].
Additionally, regulatory macrophages, M2b, are a third
category of macrophages and are characterized by IL-10
secretion and anti-inflammatory activity.

The effects of the two types of differentially polarized
macrophages on muscle cells were previously studied in
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the context of wild-type muscle [16]. Direct co-culture of
myoblasts with M2 macrophages, or conditioned medium
from them, increased myogenin-positive cells and myo-
tubes, whereas co-culture or conditioned medium from M1
macrophages had no effect [16], whereas other studies have
suggested that M1 macrophages promote myoblast prolif-
eration and M2a promote myotube fusion [14]. These stud-
ies implicate macrophages as playing a major role in the
process of muscle regeneration. However, the role of mac-
rophages in chronic myopathies remains to be elucidated.
To examine myoblast-macrophage interactions, we used
an in vitro co-culture system of macrophages and immor-
talized myoblasts (H-2K cells), focusing on the molecular
effects of macrophage-released soluble factors on myo-
blasts. We hypothesized that macrophage-secreted factors
can influence differentiation of dysferlin-deficient muscle
and proceeded to identify such factors and examine their
effects on myoblasts. To approach these questions, we (1)
examined the effects of co-culture with M1 and M2a mac-
rophages on the differentiation of wild-type (WT) mouse
myoblasts, (2) compared the effects of macrophages in
dysferlin-deficient dystrophic myoblasts, and (3) identified
IL-1P as the M1-derived factor inhibiting muscle differen-
tiation in dysferlin deficiency. Importantly, we show for
the first time that use of a blocking antibody to inhibit IL-
1B improves muscle differentiation in dysferlin-deficient
myotubes. Our studies delineate the effects of the pro-
inflammatory environment on muscle regeneration in dys-
ferlinopathy and raise the possibility of modulating this
environment to promote muscle regeneration.

Methods

Animals

All animal protocols were reviewed and approved by the
local Institutional Animal Care and Use Committee of
the Children’s National Medical Center, Washington, DC.
Four- to seven-month-old Bla/] mice (B6.A-Dysf’ rmd
GeneJ) (stock # 012767) and BALB/c (stock# 000651)
were obtained from The Jackson Laboratory (Bar Harbor,
ME). The Bla/] model of dysferlin deficiency, produced by
crossing the A/] naturally occurring dysferlin-mutated
mice onto the C57BIl6/] background, was previously char-
acterized as having moderate inflammation and pathology,
making it a suitable murine model for human disease and
one that has good strain-specific controls [17]. Mice were
euthanized by CO, asphyxiation followed by cervical dis-
location, and muscles were flash frozen in melting isopen-
tane (Fisher) cooled in liquid nitrogen.

Notexin injury

Notexin is a myotoxic phospholipase A2 derived the
venom of the Australian tiger snake (Notechis scutatus).
Four- to seven-month-old Bla/] and C57Bl/6] male mice
were anesthetized by isoflurane inhalation, and the
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hindlimbs were shaved. A unilateral injection of 20 pl of
notexin (10 pg/ml; Latoxan, Valence, France) was deliv-
ered into the tibialis anterior (TA) muscle, with the
contralateral leg used as an uninjected control. To iden-
tify injured muscles, tattoo ink at a concentration of 1:6
v/v was included in the notexin solution. To mark prolif-
erating cells, 5'bromo-2’deoxyuridine (BrdU, Sigma, St.
Louis, MO) at 0.8 mg/ml was administered in the drink-
ing water for 1 week from the time of injury and the tis-
sues were harvested at indicated time points.

Bone marrow-derived macrophage culture

Bone marrow-derived macrophages were derived as de-
scribed previously [18] from 6-week-old female BALB/c
mice in all cases except experiments using dysferlin-
deficient macrophages, which were derived from Bla/] and
C57Bl/6 (WT) mice. Briefly, mice were euthanized, and
the bone marrow was flushed for collection from the cen-
tral canals of the femur and tibia with phosphate-buffered
saline (PBS) containing 200 U/ml penicillin and 200 uM/
ml streptomycin. The cells were plated for culture in Dul-
becco’s modified Eagle medium/Ham’s F-12 Nutrient Mix-
ture (DMEM/F-12, Life Technologies, Grand Island, NY)
containing 10 % fetal bovine serum (FBS), 100 U/ml peni-
cillin and 100 uM/ml streptomycin, and 1 % L-glutamine
(all from Life Technologies) (bone marrow media), supple-
mented with 15 % L1929 cell conditioned media (LCCM)
in a 37 °C and 5 % CO,-humidified incubator. After 7 days
of culture, macrophages were stimulated as previously de-
scribed to induce classical (M1), alternative (M2a), or
regulatory (M2b) macrophage phenotypes [19]. Non-
stimulated macrophages were used as controls (M¢). The
stimulation conditions were as follows: (1) M1 activation,
10 ng/ml LPS (Sigma) in LCCM; (2) M2a activation, 20
ng/ml IL-4 (R&D Systems, Minneapolis, MN) in LCCM,;
(3) M2b activation, 10 ng/ml LPS plus IgG Ova-immune
complex [20] in LCCM; and (4) non-activated, LCCM
only. The stimulation protocols were terminated by cen-
trifugation and careful rinsing with PBS to remove all
stimulation media. The differentially polarized macro-
phages were re-suspended in DMEM containing 5 %
horse serum, 2 % chick embryo extract (US Biological,
Salem, MA), 100 U/ml penicillin, and 100 pM/ml strepto-
mycin (differentiation media). The activated macrophages
were validated by quantitative real-time polymerase chain
reaction (qQRT-PCR) and/or enzyme-linked immunosorb-
ent assay (ELISA) for M1 markers IL-12, TNFq, and iNOS
and M2a markers Fizz-1 and IL-4 [18] (Fig. 1).

H-2K myoblast-macrophage co-culture

Immortalized H-2K myoblasts derived from crosses of
Immortomice® with WT and A/] mice were previously
described [21]. Myoblasts were maintained in DMEM
containing 20 % heat-inactivated FBS, 2 % chick embryo
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extract, 100 U/ml penicillin and 100 uM/ml streptomycin,
and 0.2 % IFNy (R&D Systems) (proliferation medium).
For co-culture differentiation experiments, myoblasts
were plated onto Matrigelw (BD Biosciences, San Jose,
CA)-coated 6-well dishes at a density of 5 x 10*/cm” and
incubated at 33 °C and 10 % CO,. The next day (day 1 of
co-culture), media was changed to differentiation media,
lacking IFNy. In parallel, the differentially polarized mac-
rophages re-suspended in differentiation media were
plated onto 0.4-pum Transwell  inserts (Corning #3412,
Tewksbury, MA) at 1.5 x 10° cells/insert on top of the
myoblasts and the co-cultures were maintained at 37 °C
and 5 % CO2. Supernatants were collected, and myotubes
were harvested at indicated days of differentiation. All ex-
periments were performed in triplicate.

For cytokine treatments and IL-1B blocking experi-
ments, myoblasts were plated on glass cover slips in 6-
well dishes at 0.2 x 10° cells/cm® After an overnight
incubation, medium was changed to differentiation
medium containing indicated concentrations of IL-4
(PeproTech, Rocky Hill, NJ), IL-1f (R&D Systems), or
IL-1p mAb (MM425B, Thermo, Rockford, IL) (day 1).
To control for specificity of the blocking antibody, cul-
tures were treated with equimolar concentrations of
mouse IgG (Vector Laboratories, Burlingame, CA). Cul-
tures were incubated for three additional days, and then
differentiated muscle cells were fixed and immuno-
stained as described below.

Gene arrays and qRT-PCR

Illumina Gene arrays were performed on differenti-
ated myoblasts either cultured without macrophages
(untreated) or co-cultured with M1 or M2a macro-
phages for 3 days. All experiments were performed in
triplicate. Total RNA was extracted using the Trizol
reagent (Invitrogen, Carlsbad, CA) according to man-
ufacturer’s instructions. Concentration of each RNA
sample was determined using a NanoDrop® ND-1000 spec-
trophotometer (NanoDrop Technologies, Wilmington,
DE). The quality of RNA samples was assessed using the
Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Santa
Clara, CA).

A 200-ng aliquot of high-quality total RNA from each
sample was applied for mRNA expression profiling
using Illumina® Gene Expression BeadChip Array tech-
nology (Illumina, Inc., San Diego, CA). Reverse tran-
scription of the first and synthesis of the second cDNA
strands, followed by a single in vitro transcription
(IVT) amplification that incorporates biotin-labeled nu-
cleotides, were performed using the Illumina® Total-
Prep™-96 RNA Amplification Kit (Ambion, Austin, TX).
Of the biotin-labeled IVT product (cRNA), 1.5-ug was
hybridized to MouseWG-6v2_BeadChip (Illumina, Inc.,
San Diego, CA) for 16 h, followed by washing, blocking,
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Fig. 1 Characterization of M1 and M2 macrophages in response to differential stimuli. Bone marrow-derived macrophages were either unstimulated
(M), stimulated with LPS, to induce M1, or IL-4 to induce the M2a phenotypes, respectively. a M1 phenotype validation using gRT-PCR
for IL-12, b TNFa, and ¢ iNOS. d ELISA analysis for IL-12/23p40 in M1, M2a, or control (M@) macrophages. e Gene expression of Fizz-1 by
gRT-PCR in M1, M2a, or control (M) macrophages. f Gene expression of /[-4 by qRT-PCR in M1, M2a, or control (Mg) macrophages
J

and streptavidin-Cy3 staining according to the Whole-
Genome Gene Expression Direct Hybridization protocol
(Ilumina, Inc.,, San Diego, CA). The arrays were scanned
using HiScanSQ System, and decoded images were ana-
lyzed by GenomeStudio™ Gene Expression Module—an
integrated platform for data visualization and analysis
(Hlumina, Inc., San Diego, CA). GenomeStudio-generated
final report table was used in Hierarchical Clustering Ex-
plorer software (HCE v3) for filtering, power analysis, and
chip-based unsupervised clustering [22].

Significant molecular networks and transcriptional regu-
lators were identified using Ingenuity Pathway Analysis
(IPA) software (Ingenuity Systems, Inc., Redwood City,
CA). IPA generates networks in which differentially regu-
lated genes can be related according to previously known
associations between genes or proteins—the higher the
score, the more supportive data is found in the previously
published literature (IPA database). Additionally, we used
IPA to calculate the z-score to determine expression
direction of the transcriptional networks. A z-score >1.5
or <1.5 indicated upregulated or downregulated transcrip-
tional networks, respectively.

qRT-PCR for indicated genes (Table 1) was performed
using SYBR® Green PCR Master Mix (Applied Biosys-
tems, Grand Island, NY) on an Applied Biosystems
7900HT Fast Real-Time PCR System. Relative gene ex-
pression was determined from absolute Ct values using
the AACt method by normalizing to housekeeping
genes, S18 and GAPDH.

Histology and immunofluorescence microscopy

Frozen 10-pm muscle sections were stained with
hematoxylin and eosin (H&E) as previously described
[23]. For immunofluorescence labeling, sections were
fixed with 4 % paraformaldehyde (PFA) and non-
specific antibody binding was blocked with a solution
containing 20 % normal goat serum, 2 % bovine serum
albumen, 0.5 % Triton-X-100, and 0.1 % Tween-20.
Sections were incubated with a pan-specific macro-
phage antibody, F4/80 (AbD Serotec, Raleigh, NC),
followed by Alexa 488-conjugated anti-rat secondary
antibody. BrdU immunostaining was performed with
anti-BrdU (Invitrogen) and anti-laminin (Sigma) anti-
bodies and propidium iodide (PI) to visualize nuclei, as
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Table 1 gRT-PCR primers used in the study
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Forward

Reverse

Arg-1 5-ATGGAAGAGACCTTCAGCTAC-3'
CCR2 5"-ACACCCTGTTTCGCTGTAGG-3"
Fizz-1 5 TCCCAGTGAATACTGATGAGA-3'
Ifng 5-CATTGAAAGCCTAGAAAGTCTG-3"
IL-13 5'-TGGGCCTCAAAGGAAAGAAT-3'
IL-4 5-CATCGGCATTTTGAACGAGGTCA-3'
IL-10 5-CCAGTTTTACCTGGTAGAAGTGATG-3'
IL-12 5"-ATGGCCATGTGGGAGCTGGAG-3'
Inos 5" TGGGAATGGAGACTGTCCCAG-3'
MCP-1 5-AGGTCCCTGTCATGCTTCTG-3'
Myf5 5-GCTCGGATGGCTCTGTAGAC-3'
MyoD 5-GGCTACGACACCGCCTACTA-3'
Myogenin 5-CTGACCCTACAGACGCCCAC-3'
TNFa 5-GTTCTATGGCCCAGACCCTCACA-3'
YM-1 5-GGGCATACCTTTATCCTGAG-3'

S18 5-TAGCCTTCGCCATCACTGCC TTA-3"

5-GCTGTCTTCCCAAGAGTTGGG-3'
5-CCTGGAAGGTGGTCAAGAAG-3'
5"-CCACTCTGGATCTCCCAAGA-3'
5-CTCATGGAATGCATCCTTTTTCG-3'
5-CAGGCTTGTGCTCTGCTTGT-3"
5"-CTTATCGATGAATCCAGGCATCG-3'
5-TGTCTAGGTCCTGGAGTCCAGCAGAC-3'
5-TTTGGTGCTTCACACTTCAGG-3'
5"-GGGATCTGAATGTGATGTTTG-3'
5-GCTGCTGGTGATCCTCTTGT-3"
5"-GAACAGCAGCTTTGACAGCA-3'
5"-GCTCCACTATGCTGGACAGG-3'
5-TGTCCACGATGGACGTAAGG-3'
5-TCCCAGGTATATGGGCTCATACC-3'
5"-CCACTGAAGTCATCCATGTC-3'
5-AACCTGGCTGTACTTCCCATCCTT-3'

previously described [23]. Quantitation of BrdU-
positive nuclei was performed in notexin-lesioned mus-
cles (n = 3 mice per time point). Injured muscle sec-
tions were visually examined, and 20x images of the
lesion epicenter were acquired. Percent BrdU-positive
nuclei were calculated by expressing BrdU-positive nu-
clei as a percentage of total PI-positive nuclei.

Differentiated muscle cells from co-cultures or
treatments with indicated cytokines were fixed with
4 % PFA, permeabilized in 0.5 % Triton-X 100/PBS,
blocked in 5 % horse serum, and incubated overnight
with anti-MyoD (Novus, Littleton, CO) and anti-
MyHC (MF20, Developmental Studies Hybridoma
Bank, Iowa City, IA) antibodies. The next day, cultures
were washed in 0.1 % Triton-X 100/PBS and stained
with AlexaFluor® 488-tagged goat anti-rabbit and
AlexaFluor® 568-tagged goat anti-mouse secondary
antibodies for 1 h at room temperature. Samples were
mounted in 4',6-diamidino-2-phenylindole (DAPI)-
containing mounting medium (Vector Laboratories).
Desmin immunostaining was performed with the ABC
Elite kit (Vector Laboratories) and counterstained
with eosin. Myotube fusion was expressed as the num-
ber of nuclei in myotubes as a percent of total nuclei
in the culture.

Immunofluorescence and histology micrographs were
captured at ambient temperature using a Zeiss M2 Axiol-
mager upright epifluorescence microscope using 10x/0.45
N.A. and 20x/0.8 N.A. objectives and an Axiocam Mrm
CCD camera. Images were acquired using Axiovision 4.8.2
software and analyzed using Image] software (National In-
stitute of Health, Bethesda, MD) [24].

Cytokine analysis

ELISAs were performed on culture supernatants using
the Mouse IL-12/IL-23 p40 Non-allele-specific and
Mouse IL-10 Quantikine ELISA kits (R&D Systems)
according to manufacturer’s instructions. Cytokine ar-
rays were performed on 1 ml of supernatant from the
co-cultures using the Mouse Cytokine Antibody array,
Panel A (R&D Systems), according to manufacturer’s
instructions. IL-1p and IL-4 analysis of 24-h co-
culture supernatants was performed using the MSD
Mouse V-PLEX Proinflammatory Panel 1 kit (Meso
Scale Diagnostics, Rockville, MD). Briefly, biological
triplicates of cell-free supernatants were run in dupli-
cate and analyzed on a QuickPlex SQ120 analyzer
using MSD Discovery Workbench 4.0 software (Meso
Scale Diagnostics, Rockville, MD). Assay sensitivity
using this platform is 0.04 pg/ml.

Whole cell lysates from differentiated muscle cultures
were prepared using the NP40 Lysis buffer (Invitrogen)
containing anti-proteases (Mini-Complete, Roche, In-
dianapolis, IN). Protein concentration was determined
by the bicinchoninic acid assay (BCA) (Thermo Fisher,
Waltham, MA). To assay for IL-1B, 240-ng protein per
well was assayed in biological triplicates using the
Mouse IL-1p Quantikine ELISA kit (R&D Systems).

Western blotting

Protein concentration was determined by the BCA
assay and 10-pg of protein was resolved on a 4-12 %
Bis-Tris SDS-PAGE gel (Life Technologies) and trans-
ferred to PVDF membrane (Bio-Rad). Immunoblotting
was performed using anti-phosphorylated NFkB p65
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subunit (Cell Signaling Technology, Danvers, MA) and
anti-vinculin (Sigma) antibodies diluted in 5 % Blocking
Reagent (Bio-Rad) in Tris-buffered saline and 0.1%
Tween 20 (TBS-T). After washing with TBS-T, membranes
were probed with horseradish peroxidase-conjugated
goat anti-rabbit secondary antibody (Amersham Biosciences,
Piscataway, NJ). The membranes were then incubated
with ECL Western Blotting Detection reagent (Pierce,
Rockford, IL) and processed on Kodak BioMax XAR
X-ray film (Fisher). Densitometry was performed using
Image].

Statistical analysis

Statistical analyses were performed using SigmaPlot v.11
(SyStat Software, Chicago, IL). Student’s ¢ test was used
to evaluate statistical significance in all analyses where
two groups were compared. Unless otherwise specified,
two-way analysis of variance (ANOVA) with Tukey post
hoc analysis was used to compare more than two experi-
mental groups. Data are presented as means * standard
error of the mean (SEM). P value of <0.05 was consid-
ered significant.

For gene array analyses, GenomeStudio mRNA expres-
sion values were automatically uploaded (plug-in) into
Partek software (Partek Inc., St. Louis, MO) for statis-
tical analyses and data visualization. During this transac-
tion, Partek automatically applies the robust multi-array
average (RMA)—a normalization algorithm—and per-
forms a log, transformation for the generated expression
values. One-way ANOVA was applied to verify signifi-
cance of the comparative results. Only expression values
with fold change 21.5 and a P value cut-off of <0.01
were considered for the further analyses.

Results

Chronic macrophage infiltration in dysferlin-deficient
muscle attenuates regeneration

Dysferlin-deficient muscle contains inflammatory foci
consisting primarily of mononuclear infiltrate [25]. To
establish a baseline for our studies, we initially validated
the published extent of inflammation and ongoing re-
generation in adult (4—7-month-old) Bla/] and C57BL6/]
(WT) mice using in vivo incorporation of the thymidine
analog, BrdU, over a 1-week period to assess the overall
cellular proliferation. At this age, Bla/] muscle contained
significantly more proliferating cells than WT muscle,
(14.0 £ 3.17 vs. 3.0 £ 0.2% P < 0.05) (Fig. 2a, b). Of these,
50 + 14.0 % of the total BrdU-positive cells in Bla/]
muscle were central myonuclei, the rest being intersti-
tial, indicating that both muscle and inflammatory cells
were proliferating. In contrast, the few BrdU-positive
cells in WT muscle were all interstitial We next
counted resident macrophages in frozen tissue sections,
identified by F4/80 immunoreactivity, and determined
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them to be 65.9 + 15.5 F4/80-positive cells/mm? in Bla/]J
vs. 5.5 + 2.5 in WT (Fig. 2a, c¢), indicating that, consist-
ent with published observations, uninjured Bla/] muscle
contains excess macrophages [17]. Finally, we examined
uninjured Bla/] muscle for M1 (Mcpl, Ifng, 1l1b, Tnfa)
and M2 (Ym1, 1110, Argl, Fizzl, IL-4, and CCR2)-specific
markers. We observed a significant increase in the ex-
pression level of MCP1 and IL-1B genes (P < 0.05) in
Bla/] muscle, suggesting increased accumulation of M1
macrophages (Fig. 2d). We further observed that
whereas the expression level of the YmlI gene, a marker
of M2a macrophages was significantly increased in Bla/]
muscle, the expression level of the IL-10 gene, a marker
of M2b/c macrophages was not significantly increased
above age-matched WT muscle (Fig. 2e). These data
suggest that both M1 and M2a macrophages constitute
the major infiltrating macrophage phenotypes in 4-7-
month-old dysferlin-deficient muscle.

Enhanced NF«B signaling and inflammation has been
shown to inhibit muscle growth and differentiation [26, 27],
suggesting that chronic inflammatory processes in
dysferlin-deficient muscle impede successful regeneration.
To determine how the presence of chronic inflammatory
macrophages affects the response to injury, we used the
snake venom notexin, a potent and widely used myo-
toxin [28], to induce muscle injury in 4—7-month-old
Bla/] and WT mice. Injection of notexin resulted in a
robust regenerative response to injury in WT mice,
followed by appearance of centrally nucleated regener-
ated fibers by day 7 post-injury. Although centrally
nucleated regenerated fibers were also apparent in
Bla/] muscle, they were of smaller cross-sectional area
(CSA) than WT (Fig. 3a, b), with the fiber diameter
distribution shifted to the left, indicating a delay in
regeneration. Cellular proliferation in response to in-
jury was evaluated using BrdU incorporation, admin-
istered in drinking water for 1 week following injury.
Analysis of BrdU incorporation in frozen sections re-
vealed BrdU-positive nuclei, which could be detected
by day 3, with peak incorporation observed by day
11. At this time point, 51 + 6% of nuclei were BrdU-
positive in WT muscle, whereas only 23 + 8% of nu-
clei were BrdU-positive in dysferlin-deficient muscle
(Fig. 3c, d). Moreover, assessment of F4/80-positive
inflammatory macrophages in the frozen muscle sec-
tions showed a robust regenerative response in WT
muscle with a peak on day 3 of, on average, 645.8 +
10.4 cells/mm?, followed by a rapid reduction in the
infiltrate to an average of 20.8 + 6.9 cells/mm? by day
24 (Fig. 3e, f). The regenerative response in dysferlin-
deficient muscle was attenuated and prolonged, reach-
ing a peak on day 7 with only 319.4 + 20.8 cells/
mm?® By day 24, the F4/80-positive cell count
remained elevated in Bla/] muscle with 118.0 + 24.3
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Fig. 2 Ongoing satellite cell proliferation and macrophage infiltrate in uninjured Bla/J muscle. a Immunofluorescence staining of uninjured
3-month-old WT and Bla/J skeletal muscle. Upper panels mice were treated with BrdU in the drinking water for 7 days. Frozen muscle sections
were immunostained with anti-laminin (blue) and anti-BrdU (green) antibodies. Nuclei were detected by propidium iodide (PI, red). Bottom panels
muscle sections were immunostained with an anti-F4/80 (green) antibody and nuclei were detected by DAPI staining (blue). b Proliferating cells
quantitated in WT and Bla/J muscle are shown as percent of myonuclei that are BrdU-positive (proliferating). n = 3 non-overlapping fields from
three mice. ¢ Quantitation of the number of F4/80-positive macrophages in muscle per mm? n = 3 non-overlapping fields each from three mice.
d Expression of M1-specific markers using gRT-PCR in WT (black) and Bla/J (white) uninjured muscle. e Expression of M2-specific markers in WT
(black) and Bla/J (white) muscle using gRT-PCR. n = 3 mice per data point. Data are shown as means + SEM. *P < 0.05; **P < 0.01. Scale, 50 um
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cells/mm? remaining, indicating inadequate resolution
of the injury response (Fig. 3e, f). The macrophage
response to injury was further studied by examining
gene expression levels of markers of M1 and M2a
macrophages by qRT-PCR throughout the course of
recovery. This profiling study revealed lower gene ex-
pression of M1 markers (IFNy, TNFa and Arg-1) in
Bla/] than in WT muscle on days 0-3 (Fig. 3g—i). In
contrast, gene expression of the M2a macrophage
marker, YmlI, was greater in Bla/] than in WT muscle
(Fig. 3j). These data suggest an attenuated M1, but
not M2a, recruitment in response to injury in Bla/J
muscle.

In vitro model of myoblast and macrophage interactions

Having shown that macrophages have different effects on
WT and dysferlin-deficient muscle, we sought to directly test
their cellular interactions. We recently characterized H-2K
immortalized myoblasts from dysferlin-deficient (A/])
mice (A/] myoblasts) and demonstrated that intrinsically

upregulated NFxB pathway signaling inhibits their differ-
entiation efficiency compared with immortalized H-2K
muscle cells derived from dysferlin-sufficient (WT) litter-
mates (WT-myoblasts) [21]. To establish the cellular and
molecular effects that macrophage-derived factors exert
on muscle cells, we developed an in vitro co-culture
model of macrophages and myoblasts.

The cellular effects of macrophages on dystrophic
muscle cells have not been characterized previously. Ini-
tial experiments with co-plating showed that direct con-
tact with macrophages diminished myoblast viability. To
look for more subtle effects on muscle, we developed a
Transwell co-culture in which only secreted factors are
exchanged. WT or A/] myoblasts were plated onto Matri-
gelm—coated dishes and, 1 day later, differentiated macro-
phages were added onto the Transwell inserts (Fig. 4a).

Bone marrow-derived macrophages (M¢) were differ-
entiated to induce three macrophage phenotypes: clas-
sically activated (M1), alternatively activated (M2a), and
regulatory macrophages (M2b), as previously described
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Fig. 3 Response to injury is attenuated in Bla/J muscle compared with WT. a H&E staining of WT (left) and Bla/J (right) muscle on day 7 after
injury. b Fiber cross-sectional areas (CSA) from WT (black) and Bla/J (white) on day 7 after injury. Fiber diameter distribution of Bla/J muscle is
shifted to the left. Residual tattoo ink (blue staining) can still be seen in the injured Bla/J muscle. ¢ Immunofluorescence staining for BrdU
(green) and laminin (blue) on indicated days following notexin injury in WT or Bla/J TA muscle. Nuclei were detected with propidium
iodide (PI, red). d Quantitation of BrdU-positive nuclei on day 11 after injury shown as percent of BrdU-positive cells over total myonuclei.
e Immunofluorescence staining for F4/80 (green) on indicated days following notexin injury in WT or Bla/J TA muscle. Nuclei were
detected with DAPI (blue). f Number of F4/80-positive macrophages per mm? on indicated days after injury. n = 3. Expression of
M1-specific markers IFNy (g) and TNFa (h) and M2-specific markers Arg-1 (i) and YM1 (j) using gRT-PCR on indicated days following injury.
Data are shown as means + SEM. *P < 0.05. Scale bar, 50 ym

(see the “Methods” section; [19]). Activation of the M1 ~ WT M1 macrophages inhibit, while M2a macrophages
phenotype was confirmed by increased gene expression  potentiate myogenic differentiation of A/J cells

of IL-12 (Fig. 1a), TNFu (Fig. 1b), and iNOS (Fig. 1c) and  Following 3 days of co-culture, muscle differentiation
secretion of IL12p40 ([19]; Fig. 1d), 24 h after stimula- was assessed by immunostaining for the muscle-specific
tion. Activation of the M2a phenotype was confirmed by = marker, desmin (Fig. 4b). WT myoblasts cultured in the
increased expression of Fizz-1 ([18]; Fig. le) and IL-4 absence of macrophages differentiated well following the
(Fig. 1f). 3-day differentiation period with 57.5 + 1.4 % nuclei
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Fig. 4 Co-culture of A/J and WT myoblasts with M1 and M2a macrophages. a Diagram of myoblast-macrophage co-cultures. H-2K cells are plated
in a 6-well dish and macrophages are plated in the top Transwell™ chamber. Soluble factors secreted by both macrophages and myoblasts can
be exchanged in the culture medium. b Desmin immunostaining of dysferlin-deficient (A/J, left column) and dysferlin-sufficient (WT, right column)
myoblasts after 3 days of co-culture with differentially polarized macrophages: LPS treated (M1), IL-4 treated (M2a), LPS+OVA-IC treated (M2b), or
untreated (M). Scale, 50 um. ¢ % Fusion index in 3-day-old co-cultures of WT and A/J myoblasts with WT mice-derived macrophages obtained
by dividing the number of nuclei in myotubes by total myonuclei. d Total number of cells in 3-day-old co-cultures with WT mice-derived
macrophages. e % Fusion index in 3-day-old co-cultures of WT and A/J myoblasts with Bla/J mice-derived macrophages. n = 3 independent
experiments. Data are shown as means + SEM; ANOVA, *P < 0.05; ***P < 0.001

being in myotubes (none, Fig. 4c). Differentiation was
lower in A/] myoblasts cultured alone (39.1 + 1.9 %, P <
0.05), as had been previously reported [21]. Co-culture
of both WT and A/] myoblasts with M1 or M2b macro-
phages significantly reduced myofusion (Fig. 4c). How-
ever, the reduction to myofusion observed in WT
myoblast-M1 macrophage co-cultures (83 % reduction,
from 57.5 £+ 1.4 to 9.9 + 1.8 %) was greater than that

observed in A/] myoblast-M1 macrophage co-cultures
(58 % reduction, from 39.1 + 19 to 16,5 + 1.6 %)
(Fig. 4c). Total cell numbers of WT and A/] cells were
unaffected by co-culture (Fig. 4d).

Co-culture with M2a macrophages also had different
effects on WT and A/J cells, whereas co-culture with M2a
macrophages significantly increased fusion of A/] myo-
blasts, without change in total cell numbers (39.0 + 1.9 vs.
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49.7 £ 2.5 %, P < 0.05) (Fig. 4c, d), such an increase was
not observed in WT myoblast-M2a macrophage co-
cultures (57.5 + 1.4 vs. 32.7 + 2.2 %, P < 0.05). Since none
of these effects resulted from changes to cell numbers
(Fig. 4d), these data suggest that differentiation of A/]
myoblasts is resistant to the anti-myogenic effects of
M1 macrophages, but may be potentiated by the pro-
myogenic effects of M2a macrophages.

Dysferlin-deficient M2a macrophages do not potentiate
myogenic differentiation of A/J myoblasts
Dysferlin-deficient murine macrophages were previously
reported to be more phagocytic than WT [29]. We used
the co-culture model to further study the effects of mac-
rophages derived from dysferlin-deficient mice (Bla/J) on
muscle differentiation, compared with macrophages de-
rived from C57Bl/6] mice (WT). WT myoblasts co-
cultured with wunpolarized Bla/] M¢ macrophages
showed approximately 37 % less myotube fusion (22.0 +
1.3 %) (Fig. 4e) than those co-cultured with WT M¢
macrophages (35.6 + 3.1 %) (Fig. 4c). Interestingly, such
inhibition of myotube fusion was not observed when A/]
myoblasts were co-cultured with Bla/] M¢ macrophages.
Furthermore, in contrast to the beneficial effects on A/]
myoblasts of WT M2a macrophage co-culture, their fu-
sion was not improved by co-culture with Bla/] M2a
macrophages (Fig. 4e). Together, these data suggest that
M2a macrophages from Bla/] mice show reduced pro-
myogenic activity.

Dysferlin-deficient macrophages show enhanced IL-10
and IL-12 expression
Our analyses suggested that the observed anti-
myogenic effects of M1 macrophages and pro-
myogenic effects of M2a macrophages are mediated by
soluble factors secreted from each respective pheno-
type. Thus, we sought to identify the factors mediating
the effects on muscle differentiation in the co-cultures.

The marked differences of WT and Bla/] macrophages
on myoblast differentiation might be due to intrinsic dif-
ferences in cytokine secretion. We focused on comparing
two key factors in the co-cultures: IL-12 secreted in re-
sponse to LPS (M1) stimulation and IL-10 secreted in re-
sponse to LPS+OVA-IC (M2b). ELISA analysis performed
on supernatants from 3-day-old co-cultures showed that
Bla/] macrophages released more IL-10 than WT in re-
sponse to LPS (P < 0.001) and LPS+OVA-IC (P < 0.05)
stimulation and more IL-12 in response to LPS (P < 0.01)
and LPS+OVA-IC (P < 0.01) stimulation (Fig. 5a, b).
These data demonstrate that Bla/] macrophages release
more pro-inflammatory cytokines.

Finally, we used cytokine arrays to analyze the soluble
factors released into the culture medium after 3 days
of WT myoblast co-culture. Analysis of conditioned
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medium of WT cells co-cultured with M1 macrophages
revealed expression of pro-inflammatory cytokines IL-
23, RANTES, and TNFa (Fig. 5¢). In contrast, co-culture
with M2a macrophages resulted in secretion of the Th2-
associated cytokine, IL-4. We further determined the
concentration of IL-4 in the M2a co-cultures to be un-
changed between WT and A/] myoblasts (10.6 + 0.3 vs.
10.6 + 2.8 pg/ml, respectively) (Fig. 5d).

M1 and M2a macrophages exert different molecular
effects on WT and dysferlin-deficient myoblasts

The co-culture experiments suggested that M1 and
M2a-polarized macrophages can greatly impact the
course of myoblast differentiation, and this activity is
dependent on functional dysferlin both in macrophages
and in myoblasts. To gain insight into the molecular
events orchestrating these effects, we performed Illu-
mina transcriptome analysis on WT and A/] myoblasts
co-cultured for 3 days with M1 or M2a macrophages de-
rived from BALB/c mice (Fig. 6). To identify transcripts
in differentiated muscle cultures regulated specifically by
co-culture with either M1 or M2a macrophages, tran-
scriptome data were normalized to myoblasts cultured
alone (untreated). We identified 2874 transcripts that
were differentially regulated in WT myoblasts co-
cultured with M1 macrophages and 1112 transcripts that
were differentially regulated in WT myoblasts co-
cultured with M2a macrophages (P < 0.01) (Fig. 6a).
Venn diagrams showed that, of these, 2350 transcripts
were regulated specifically by WT myoblast-M1 macro-
phage co-culture, 588 were regulated specifically by WT
myoblast-M2a macrophage co-culture, and 524 tran-
scripts were in common within WT myoblast-M1
macrophage and WT myoblast-M2a macrophage co-
cultures (Fig. 6a). Interestingly, there were fewer regu-
lated transcripts in A/] myoblasts co-cultured with mac-
rophages: 1743 transcripts were differentially regulated
in A/] myoblast-M1 macrophage co-cultures and 986
transcripts were differentially regulated in A/] myoblast-
M2a macrophage co-cultures (Fig. 6b). Venn analysis
showed that, of these, 1274 transcripts were regulated
specifically by A/] myoblast-M1 macrophage co-culture,
517 were regulated specifically by A/] myoblast-M2a
macrophage co-culture, and 469 were regulated by both
A/] myoblast-M1 macrophage and A/] myoblast-M2a
macrophage co-cultures (P < 0.01). Thus, co-culture
with M1 macrophages had less of an impact on the tran-
scriptome of A/J] than WT myoblasts (Fig. 6b).

Ingenuity Pathway Analysis led to the identification of
the major transcriptional networks that were differentially
regulated in WT myoblasts co-cultured with M1 macro-
phages. The major upregulated networks included the pro-
inflammatory NFxB, IL-13, TNFa, and TGEB1 networks
(Fig. 6c), while the major downregulated networks were
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muscle-specific networks including MyoD1, myogenin, and
Pax7 (Fig. 6¢). We had previously shown that gene expres-
sion of 1l1f3 is increased in dysferlin-deficient A/] myo-
blasts [21]. Consistent with the prior report, Il1f was
upregulated by 3.0-fold (P < 0.001) in untreated A/] com-
pared with untreated WT myoblasts. Moreover, the IL-1p,
NF«kB, TNFa, and TGEP1 networks were less affected in
M1-co-cultured A/] myoblasts than in WT, consistent with
those networks being intrinsically upregulated in untreated
A/] myoblasts (Fig. 6c). Partek clustering analysis also
showed that untreated A/] myoblasts clustered with, ie.,
were more similar to, WT myoblast-M1 macrophage co-
cultures rather than untreated WT myoblasts (Fig. 6e). Co-
culture of WT myoblasts with M1 macrophages led to sig-
nificant upregulated expression of pro-inflammatory genes
including C2, Csfl, Ifitml, Tnfaip2, and TIr2 (Fig. 6e,
Table 2). Conversely, co-culture of WT myoblasts with M1
macrophages led to decreased expression of muscle
differentiation-specific genes, including Actn3, Igfl, Myoz2,
and Myh7 (Fig. 6e, Table 2). In contrast to WT, pro-
inflammatory genes were upregulated, and muscle dif-
ferentiation genes were downregulated, in untreated A/J
myoblasts, compared with untreated WT myoblasts, and
incubation with M1 macrophages did not further modify
their expression (Fig. 6e, Table 2). These data suggest that

intrinsically upregulated pro-inflammatory networks in
A/] muscle cultures are resistant to further activation
by co-culture with M1 macrophages.

Co-culture of WT myoblasts with M2a macrophages
activated muscle-specific, and inhibited inflammatory,
networks (Fig. 6d). Interestingly, muscle-specific net-
works including RbI and Cdkn2a were activated to a
greater extent in A/] than WT myoblasts when co-
cultured with M2a macrophages. Moreover, several
pro-inflammatory networks, including NF«xB, IL-6, and
IL-1B, that were initially higher in untreated A/] than
WT myoblasts, were decreased to a greater extent than
WT when co-cultured with M2a macrophages (Fig. 6d).
Further, clustering analysis showed that co-culture of
A/] cells with M2a macrophages “ameliorated” their
characteristic pro-inflammatory phenotype by down-
regulating expression of pro-inflammatory genes, includ-
ing Tnfsf9, Irfl, C2, and Il1b, and up-regulating the
expression of muscle-specific genes, including MyozI,
Myl2, Myh6, Myf6, and Musk. Thus A/] myoblast-M2a
macrophage co-cultures clustered closely with, i.e., were
more similar to, both untreated WT myoblasts and WT
myoblast-M2a macrophage co-cultures (Fig. 6f, Table 3).
These analyses support the idea that M2a macrophages
(or factors released from them) may improve the
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Fig. 6 lllumina Gene array analysis of myoblasts co-cultured with macrophages. Venn diagrams showing gene subsets in WT (a) or A/J (b) myoblasts
that were differentially regulated by co-culture with M1 only (green), by M2a only (red), or in both co-cultures (overlap). ANOVA, P < 0.01. Transcriptional
networks activated by co-culture with M1 (c) or M2a (d) in A/J (red) and WT (blue) myoblasts sorted by z-score. z-score >1.5 or <1.5 indicates activated
and inhibited networks, respectively. e, f Partek clustering analysis showing genes expressed in WT control myoblasts, A/J control myoblasts and WT or
A/J myoblasts co-cultured with M1 (e), or M2a (f). Blue indicates downregulated; red indicates upregulated

differentiation of dysferlin-deficient muscle cells by inhi-
biting the intrinsic pro-inflammatory environment that
is characteristic of dysferlin-deficient muscle.

The data from the desmin staining and transcriptome
analyses suggested a blunted response in A/] myoblasts
to co-culture with M1 macrophages, suggesting that A/J
myoblasts may be less sensitive than WT to the pro-
inflammatory effects of M1 macrophages. We tested this
idea by examining NF«B pathway activation in lysates
of WT and A/] myoblasts co-cultured with M1 macro-
phages (Fig. 7). In accord with the transcriptome ana-
lysis, co-culture of WT myoblasts with M1 macrophages
led to robust phosphorylation of the NFkB-p65 subunit
(phospho-p65) (Fig. 7a, b), whereas phospho-p65, which
was significantly upregulated in untreated A/J cultures,
was not further augmented by co-culture with either
Mo or M1 macrophages (Fig. 7a, b).

The transcriptome analysis showed that IL-1p gene ex-
pression is upregulated in A/] myoblasts. Therefore, we
tested for expression of IL-1B protein in lysates of WT
and dysferlin-deficient co-cultured myotubes using an
ELISA assay that detects both the precursor and mature
forms of IL-1B. When WT myoblasts were co-cultured
with M2a macrophages, they expressed low levels of IL-13
but showed significant upregulation of cellular IL-13 when
co-cultured with M1 macrophages. Compared with WT
myoblasts, expression of IL-1f in A/] myoblasts was sig-
nificantly upregulated in M2a macrophage co-cultures
and was not further enhanced in M1 macrophage co-
cultured myotubes (Fig. 7c). We further tested IL-1f se-
cretion into the co-culture supernatants and found that
M1 macrophage co-cultures secreted IL-1p at higher
levels compared with untreated or M2a macrophage co-
cultures, consistent with previous reports [30]. Further-
more, A/] myoblast-M1 macrophage co-cultures secreted
more IL-13 when compared with WT myoblast-M1
macrophage co-cultures (Fig. 7d).

IL-4 potentiates muscle differentiation in both WT and
A/J myoblasts

The major M2a macrophage-secreted cytokine identified
in our cytokine analyses, IL-4, has previously been impli-
cated in playing an important role in myoblast differenti-
ation, and its loss results in smaller myotubes with fewer
myonuclei [31]. However, the effect of IL-4 on myogenic
differentiation of dystrophic muscle has not been previ-
ously explored. Based on the above studies, we

hypothesized that IL-4 might be the soluble factor medi-
ating the beneficial effects of M2a co-culture on A/J
myoblasts. To test this possibility, we queried whether
IL-4 alone can mirror the beneficial effects of A/J
myoblast-M2a macrophage co-culture, by potentiating
differentiation. Treatment with 20 ng/ml of IL-4 nearly
doubled the percent fusion, compared with untreated, in
both WT (43.0 = 0.8 vs. 26.1 + 2.9 %, P < 0.01) and A/]
(38.0 £ 6.0 vs. 15.7 + 0.1 %, P < 0.05) cultures (Fig. 8a,
b). Treatment with lower amounts of IL-4 (4 ng/ml) also
showed a trend for increase, though not significant.
Additionally, treatment with IL-4 potentiated gene ex-
pression of MyoD, Myf5, and myogenin in WT muscle
cultures (Fig. 8c—e). IL-4 also increased the expression
of MyoD, Myf5, and myogenin genes in A/] cultures, but
not to the levels observed in WT cultures (Fig. 8c—e).
Thus, IL-4 alone is not sufficient to restore the muscle
differentiation defect in A/] myoblasts.

Inhibition of IL-1B ameliorates muscle differentiation in
A/J myoblasts
Having shown that IL-4 activity alone is not sufficient
to rescue muscle differentiation in A/] muscle cells,
we next focused on factors released from M1 macro-
phages that inhibit muscle differentiation. We initially
examined differentiation in cultures treated with the
pro-inflammatory cytokines we observed being re-
leased by M1 macrophages: IL-10, IL-12, and TNFa,
but did not observe any effects on myotube fusion.
We were then guided by our transcriptome analysis
of co-cultured myoblasts which revealed increased ex-
pression of the IL-1p gene in A/] myoblasts (Table 2),
as well as our observations of increased cellular and
secreted IL-1P protein in A/] myoblasts (Fig. 7c), and
qRT-PCR data showing that IL-1f is upregulated
in vivo in uninjured Bla/] muscle (Fig. 2). This, to-
gether with our previous demonstrations that IL-1f is
a major pro-inflammatory factor released from LPS/
BzATP-stimulated macrophages [30], and that A/]
muscle shows upregulated IL-1(3 secretion and IL-1f
signaling [30, 21] heavily implicated IL-1f in the sup-
pression of muscle differentiation and has not been
previously reported. To test this idea in vitro, we
treated differentiating WT and A/] myoblasts with
recombinant IL-1B for 5 days. Treatment with IL-1B
reduced the percent fusion and the number of MyoD-
positive cells, compared with untreated (Fig. 9a, b).
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Table 2 Transcripts modulated in A/J vs. WT myoblasts co-cultured with M1 macrophages
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Gene symbol Description WT-MT vs. WT  AJvs. WT  AJ-M1 vs. AJ
Ifi27 Interferon, alpha-inducible protein 27 16.32 241 17.75
Ifit3 Interferon-induced protein with tetratricopeptide repeats 3 1049 1.75 344
Q Complement component 2 2.88 263 n/a
Ifitm1 Interferon-induced transmembrane protein 1 2.86 1.76 n/a
MMP2 Matrix metallopeptidase 2 277 2.54 n/a
IL7 Interleukin 7 262 1.69 n/a
H2-T23 Histocompatibility 2, T region locus 23 2.56 441 n/a
Ifitm3 Interferon-induced transmembrane protein 3 2.50 1.65 n/a
Vdr Vitamin D (1,25-dihydroxyvitamine D3) receptor 237 218 n/a
Tnfaip2 Tumor necrosis factor, alpha-induced protein 2 2.28 157 n/a
Csf1 Colony stimulating factor 1 2.25 1.81 n/a
[@@RY Chemokine (C-C moitif) ligand 9 223 1.99 2.79
Ltbp1 Latent transforming growth factor beta binding protein 1 2.20 1.53 n/a
Pde4b Phosphodiesterase 4B, cAMP-specific 214 161 1.73
H2-Q5 Histocompatibility 2, Q region locus 5 2.00 263 n/a
Sleia3 Solute carrier family 1 (glial high affinity glutamate transporter), member 3 1.99 559 n/a
Angptl4 Angiopoietin-like 4 1.98 1.93 n/a
Gchl GTP cyclohydrolase 1 1.94 248 314
Bdnf Brain-derived neurotrophic factor 1.93 1.54 n/a
P2rx4 Purinergic receptor P2X, ligand-gated ion channel 4 1.86 1.82 n/a
Tgif1 TGFB-induced factor homeobox 1 1.82 238 n/a
Serpinh1 Serpin peptidase inhibitor, clade H (heat shock protein 47) 1.76 153 1.64
Stat1 Signal transducer and activator of transcription 1 167 1.77 -1.72
Cend1 Cyclin D1 1.64 157 1.66
Dab2 Disabled 2, mitogen-responsive phosphoprotein 1.62 1.79 n/a
Nfkbie Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon 1.60 n/a 1.54
Tir2 Toll-like receptor 2 1.58 1.75 n/a
Bmpr2 Bone morphogenetic protein receptor, type Il 1.50 1.58 n/a
Actn3 Actinin, alpha 3 —-1.50 —-1.50 n/a
Tir4 Toll-like receptor 4 —-1.53 n/a —-1.56
Rgs16 Regulator of G-protein signaling 16 -1.54 -1.64 n/a
Dpp3 Dipeptidyl-peptidase 3 -1.56 -1.63 n/a
Myh7 Myosin, heavy chain 7 (type 1) —-1.65 -1.87 n/a
Id1 Inhibitor of DNA binding 1 -1.72 -1.53 -1.59
IL1b Interleukin 1 beta -173 3.05 -2.89
Cdknic Cyclin-dependent kinase inhibitor 1C (p57, kip2) -1.75 -18.10 261
Mef2c Myocyte enhancer factor 2C -1.80 -1.86 -2.27
Btrc Beta-transducin repeat containing E3 ubiquitin protein ligase -1.89 -1.50 n/a
Igf1 Insulin-like growth factor 1 -191 -171 n/a
Tgfbl Transforming growth factor, beta 1 -1.96 1.58 -2.56
Tgfb2 Transforming growth factor, beta 1 -2.00 n/a -1.84
Musk Muscle, skeletal, receptor tyrosine kinase -2.03 -4.73 -1.90
Myoz2 Myozenin 2 —2.88 -1.68 n/a
Sgcg Sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) =301 -1.83 -1.72
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Table 2 Transcripts modulated in A/J vs. WT myoblasts co-cultured with M1 macrophages (Continued)

Myl3 Myosin, light chain 3, skeletal slow
Myfe Myogenic factor 6
Myh1 Myosin, heavy chain 1 (type lIx/d)

-3.07 —242 —1.53
—4.13 —3.53 —-194
—5.89 191 n/a

Fold-change values of lllumina Gene array transcript subset which showed significant modulation by WT-M1 co-culture vs. WT alone compared to their fold-change
values in A/J vs. WT and A/J-M1 co-culture vs. A/J alone. Only transcripts with fold-change values >1.5 and P values <0.01 were considered for analysis. ANOVA was

applied to verify significance

Importantly, the decrease in myotube fusion and
MyoD-positive cell number was significantly greater
in A/] than WT cultures, indicating that A/] myo-
blasts are more sensitive than WT to IL-1B-mediated
inhibition of muscle differentiation (Fig. 9a, b). These
data suggest that IL-1f is the major M1 macrophage-
derived factor that inhibits differentiation of A/J
myoblasts.

Having identified upregulated IL-1B signaling in A/]
myoblasts, and inhibition of myogenesis due to IL-1p se-
creted from M1 macrophages in Bla/] muscle, we hy-
pothesized that if IL-1p is mediating the defective
myogenesis and regeneration in dysferlin-deficiency,
then this effect should be blocked by inhibition of IL-1p
in muscle cultures. Differentiating WT and A/] myoblast
cultures were treated with an anti-IL-13 monoclonal
antibody (mAb) or equimolar concentrations of a con-
trol anti-mouse IgG. Treatment with the anti-IL-1p
mADb significantly increased myotube fusion (Fig. 9¢c, d),
the number of MyoD-positive cells (Fig. 9¢), and expres-
sion of MyoD, Myf5, and myogenin (Fig. 9f-h) in A/]
muscle cultures, compared with control IgG treatment,
indicating that suppression of IL-1B signaling arising
from M1 macrophages can restore muscle regeneration
in dysferlin deficiency.

Discussion

Upregulated pro-inflammatory signaling in dysferlin-
deficient myoblasts inhibits muscle differentiation and
regeneration

Dysferlin-deficient muscle is marked by inflammatory
foci, mononuclear infiltrate, and upregulated NF«B path-
way signaling [32, 33]. Mounting evidence suggests that
the upregulated IL-1p [30] and upregulated NF«B signal-
ing [21] arises not only from immune cells but also from
dysferlin-deficient muscle fibers and cells. But whether
the inflammation impedes regeneration, and if so, what
aspect of it, has been in debate. Here, we present a
systematic evaluation of interactions between muscle
and macrophage cells to identify key factors mediating
the pro- and anti-myogenic response to macrophages
in dystrophic muscle. We used the approach of
macrophage-myoblast Transwell co-cultures to show
that M1-polarized macrophages, acting in part via IL-1p,
activate pro-inflammatory networks in WT myoblasts,
which greatly diminishes myoblast differentiation (Fig. 4).

In contrast, M2a macrophages, acting in part via IL-4,
potentiate muscle regeneration, especially in A/] myo-
blasts. In addition, we show that the intrinsically upreg-
ulated pro-inflammatory networks in dysferlin-deficient
muscle make it refractory to the myogenic inhibition by
M1 macrophages.

There has been some debate about whether loss of
dysferlin results in impaired regeneration. Earlier reports
suggested that muscle regeneration after crush injury in
SJL/] mice was faster than in BALB/c [34]. Examination
of notexin-induced injury in C57BI10-SJL/] mice con-
cluded that neutrophil recruitment was attenuated, but
muscle regeneration was unchanged [35]. More recently,
experiments using large-strain injury suggested that A/J
mice showed no attenuation in either neutrophil or
macrophage infiltration [36]. On the other hand, work in
our laboratory and others demonstrated that dysferlin-
deficient mice lag in muscle regenerative capacity, com-
pared with dysferlin-sufficient [21, 37, 38]. It is possible
that differences in strains and types of injury could ac-
count for these discrepancies. Very little muscle path-
ology was observed in both native and C57Bl10-back-
crossed SJL/J mice, which we posited could account for
the lack of observation of any regeneration defect, and
A/] mice lack complement C5 [17]. Thus, to rule out
confounding strain-specific effects unrelated to loss of
dysferlin, we conducted our experiments in Bla/] mice
compared with C57Bl/6].

Our findings that regeneration after notexin injury in
Bla/] mice is attenuated and does not adequately resolve
accords with the conclusions of Chiu et al., although the
attribution of this outcome to a defect in neutrophil re-
cruitment rather than monocyte recruitment does not
marry with our data. We show that M1 macrophages,
although upregulated in uninjured dysferlin-deficient
muscle, are not recruited as robustly as in WT muscle,
with fewer F4/80-positive cells observed by immunofluor-
escence staining (Fig. 3) throughout the course of recov-
ery. Although we did not test for neutrophil recruitment,
our studies suggest that the M1-mediated response to in-
jury is attenuated in Bla/] muscle, which we attribute to
chronic M1 macrophage infiltration and upregulation of
M1-derived IL-1p and NF«B in the absence of dysferlin.

The attenuated response to M1 macrophage recruit-
ment in Bla/] mice could impede necrotic tissue clearing
in dysferlin-deficient muscle and thus be inhibitory to
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Gene symbol Description WT-M2 vs. WT AJ vs. WT AJ-M2 vs. AJ
Myl2 Myosin, light polypeptide 2, regulatory, slow 231 n/a 3.07
Sdc4 Syndecan 4 204 -2.16 n/a
Nrap Nebulin-related anchoring protein 1.98 n/a 2.29
Calr Calreticulin 1.88 n/a -1.87
Mylk2 Myosin light chain kinase 2 1.88 n/a n/a
Ltbpl Latent transforming growth factor beta binding protein 1 1.85 154 n/a
Ckm Creatine kinase, muscle 1.83 n/a 1.78
Mybpc2 Myosin binding protein C, fast type 1.64 247 1.94
Rhob Ras homolog family member B 162 n/a 158
Myh7 Myosin, heavy chain 7 (type ) 161 -1.87 n/a
114 Interleukin 4 1.59 n/a n/a
Ryr1 Ryanodine receptor 1 1.57 n/a n/a
Myoz2 Myozenin 2 1.56 -1.69 1.81
Myh6 Myosin, heavy chain 7 (cardiac) 152 n/a 2.00
Myom1 Myomesin 1 1.52 n/a 1.54
ld2 Inhibitor of DNA binding 2 -1.56 1.77 -2.20
7 Interleukin 7 -1.57 1.70 n/a
Rab27b RAB27B, member RAS oncogene family —-161 n/a -167
ligp2 Interferon inducible GTPase 2 -1.79 2.06 -2.83
Psmb8 Proteosome subunit, beta type 8 -1.84 1.78 -1.86
Ifi47 Interferon gamma inducible protein 47 -1.90 2.18 -2.00
« Complement 2 -1.95 264 -240
Caspl Caspase 1 -2.18 1.98 -222
Plk1 Polo-like kinase 1 -2.29 -2.76 —-1.68
Irf1 Interferon regulatory factor 1 -291 1.88 —243
Gbp2 Guanylate binding protein 2, interferon-inducible -337 1.60 -233
Akt2 v-akt murine thymoma viral oncogene 2 n/a n/a 1.51
Gsk3B Glycogen synthase kinase 3 n/a n/a -1.75
ltgb1 Integrin, beta 1 (fibronectin receptor beta) n/a n/a -237
Jak1 Janus kinase 1 n/a n/a -1.87
Myozl Myozenin 1 n/a n/a 1.70
Ripk1 Receptor (TNFRSF)-interacting serine-threonine kinase 1 n/a n/a -1.51
Vegfc Vascular endothelial growth factor C n/a n/a -1.50
Sleia3 Solute carrier family 1 (glial high affinity glutamate transporter), member 3 n/a 559 -1.98
H2-T23 Histocompatibility 2, T region locus 23 n/a 441 -1.66
b Interleukin 1 beta n/a 3.05 —247
Cxclle Chemokine (C-X-C motif) ligand 16 n/a 292 —1.74
Col5a2 Collagen, type V, alpha 2 n/a 2.66 -1.72
Crif1 Cytokine receptor-like factor 1 n/a 264 -1.69
Ccl9 Chemokine (C-C motif) ligand 9 n/a 2.00 1.50
Angptl4 Angiopoietin-like 4 n/a 193 -1.52
Stat1 Signal transducer and activator of transcription 1 n/a 177 -1.61
Tnfrsf1b Tumor necrosis factor receptor superfamily, member 1b n/a 1.63 -1.51
Bmpr2 Bone morphogenetic protein receptor 2 n/a 1.58 -161
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Table 3 Transcripts modulated in A/J vs. WT myoblasts co-cultured with M2a macrophages (Continued)

Stam?2 Signal transducing adaptor molecule (SH3 domain and ITAM motif) 2 n/a 157 -1.62
Gvinl GTPase, very large interferon inducible 1 n/a 1.53 -1.75
Tnfsf9 Tumor necrosis factor (ligand) superfamily, member 9 n/a 151 -157
Prkaca Protein kinase, CAMP-dependent, catalytic, alpha n/a -158 151
Prosapip1 ProSAPiP1 protein n/a -1.90 1.67
Myfé Myogenic factor 6 n/a —354 262
Musk Muscle, skeletal, receptor tyrosine kinase n/a -4.73 -1.53
Cdknic Cyclin-dependent kinase inhibitor 1C (p57, Kip2) n/a -18.11 552

Fold-change values of lllumina Gene array transcript subset which showed significant modulation by WT-M2a co-culture vs. WT alone compared to their fold-
change values in A/J vs. WT and A/J-M2a co-culture vs. A/J alone. Only transcripts with fold-change values >1.5 and P values <0.01 were considered for analysis.

ANOVA was applied to verify significance

muscle regeneration. There have been substantial re-
ports demonstrating that recruitment of neutrophils and
the removal of necrotic myofibers by M1 macrophages
is a pre-requisite to successful regeneration [14]. This
view is further substantiated by acute injury studies, in
which removal of phagocytes by use of liposome-
encapsulated clodronate [39], depletion of CD11b
promoter-driven diphtheria toxin [13] or by use of a
Ly6C and Ly6G-blocking antibody [40], resulted in de-
layed regeneration, with ensuing increase in necrotic
myofibers, interstitial inflammation, and fat infiltration.
Whereas phagocytes are necessary for resolution of
acute injury, their role is less clear in chronic inflamma-
tory disease; numerous studies have now documented
advantages of blocking some aspects of the inflamma-
tory response to improve pathology, by inhibiting TLRs
in mdx [23] and dysferlin-deficient mice [41], and by de-
pletion of complement C3 in dysferlin-deficient mice
[42]. Our studies suggest the specific depletion or block-
ade of inflammatory mediators, such as IL-1p, as an al-
ternative strategy to take advantage of M1 macrophage-
mediated clearance without the subsequent immunopa-
thology associated with their recruitment.

Macrophages from dysferlin-deficient muscle were
previously shown to be more phagocytic than WT [29].
We further characterized macrophages from Bla/] mice
as secreting excess IL-12 (M1 response) and IL-10 (M2b
response), which complements the earlier studies. Fur-
thermore, undifferentiated macrophages from Bla/] mice
inhibited differentiation when co-cultured with WT
myoblasts. Together, these studies support the view that
dysferlin-deficient un-polarized bone marrow-derived
macrophages are “primed” towards the M1 phenotype.
Such “priming” is likely to be a result of DAMP signals in
dysferlin-deficient muscle (reviewed in [43, 8]). DAMP sig-
nals are recognized by TLR receptors which activate intra-
cellular signaling pathways via the adaptor molecule,
myeloid differentiation primary response gene 88 (MyD88),
thus stimulating macrophage activation (reviewed in [43]).

Effects of differently polarized macrophages on muscle
regeneration

Previous characterization of interactions between
macrophages and myoblasts demonstrated that direct
co-culture with M1-polarized macrophages decreased
fusion of WT myoblasts [16]. Our observations using
the Transwell co-cultures of WT myoblasts and M1-
polarized macrophages show a similar inhibition of dif-
ferentiation and are in agreement with those made in
the earlier study.

Alternatively, activated macrophages have been shown
to potentiate muscle growth. ED2+ macrophages select-
ively increase myoblast proliferation in muscle cultures
[44]. A more current classification identifies IL-4-activated
M2a macrophages as pro-myogenic, since direct co-
culture of myoblasts with M2a macrophages or M2a-
conditioned media increased myotube fusion and the
number of myogenin-positive cells [16]. In agreement
with these findings, our Transwell co-cultures with
M2a macrophages facilitated muscle differentiation of
dysferlin-deficient myoblasts (Fig. 4), fitting well with our
transcriptome analysis, which suggested that the improve-
ment arises from upregulation of pro-myogenic molecular
networks in the myoblasts (Fig. 6).

Our particular advance was the identification of IL-4 as
the major factor mediating the pro-myogenic activity of
M2a macrophages. IL-4 has been documented as a potent
promoter of muscle growth. Treatment of muscle cultures
with IL-4 in vitro leads to myotube hypertrophy, whereas
mice lacking IL-4 or its receptor show reduced muscle
size [31]. IL-4 has been shown to inhibit secretion of IL-
1B, TNE and IL-6 from monocytes [45], and when se-
creted following muscle damage, to inhibit differentiation
of adipocyte progenitor cells [12]; thus, the beneficial ef-
fect of IL-4 on A/] myoblast differentiation may be medi-
ated by its anti-inflammatory and pro-myogenic activities.
These studies, together with our current observations, fur-
ther substantiate the role of IL-4 as an important player
mediating muscle growth.
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Fig. 7 NFkB and IL-1f in myoblast-macrophage co-cultures.

a Representative Western blot showing phosphorylation of the
NFkB p65 subunit in WT or A/J myoblasts either cultured alone
(-), or co-cultured for 3 days with M®, or M1 macrophages.

b Quantitation of phospho-p65 pixel intensity in a, normalized
to vinculin pixel intensity. n = 3 independent experiments.

c IL-1B ELISA analysis of whole cell lysates prepared from WT
(black) or A/J myotubes (white) co-cultured for 24 h with M1 or
M2a macrophages. d MSD IL-1(3 assay performed on supernatants from
WT (black) or A/J myotubes (white) co-cultured for 24 h alone, with M1
or M2a macrophages. Two-way ANOVA with Tukey post hoc test were
used to calculate P values. n = 3 cultures per data point. Data are
shown as means + SEM. *P < 0.05; ***P < 0.001
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Fig. 8 IL-4 potentiates muscle differentiation in WT and A/J myoblasts.
a Immunofluorescence staining of differentiated WT and A/J cultures
treated for 72 h with 4 or 20 ng/ml of IL-4. Control cultures were treated
with equal volumes of PBS (NT). Following incubation, cultures were
immunostained with anti-MyoD (green) and anti-MyHC (red). Scale bar,
50 um. b Myofusion index (expressed as % fusion). c-e Gene expression
of MyoD (b), Myf5 (c), and myogenin (d) determined by gRT-PCR in WT
and A/J cultures treated with indicated concentrations of IL-4. N = 4.
Data are shown as means + SEM. ANOVA with Tukey post hoc analysis,
*P < 005; **P < 0.01; **P < 0005

IL-1B negatively affects muscle regeneration

Co-culture with M1 macrophages had less of an impact
on the transcriptome of A/J than WT myoblasts (Fig. 6b),
which our data suggest is due to intrinsically up-
regulated expression of cytokines, such as IL-1fB in the
A/] myoblasts. We have previously shown that dysferlin-
deficient muscle shows upregulated expression of the IL-
1B gene and protein [30, 21] and have now extended
these studies to include upregulated IL-1} gene expres-
sion in uninjured dysferlin-deficient muscle (Fig. 2), up-
regulated IL-1p gene expression in A/] myoblasts
(Table 2), increased IL-1p precursor and mature forms
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in lysates (Fig. 7c), and supernatants from A/] myoblasts
co-cultured with M1 macrophages (Fig. 7d), compared
with WT myoblasts. Importantly, treatment with an IL-
1B mAbD to neutralize IL-1p improved differentiation of
A/] myoblasts (Fig. 9). Together, these studies make a
compelling case for IL-1B as a major player mediating
the aberrant response to regeneration in dysferlin defi-
ciency. The secreted form of IL-1f is produced from the
precursor pro-peptide by cleavage via the NALP-3 com-
plex [30], a process requiring both a DAMP signal such
as LPS as well as an additional signal, such as benzylated
ATP (BzATP). LPS stimulation of M¢ macrophages
without the BzATP also leads to release of IL-1f [30],

which we observed in our co-culture supernatants
(Fig. 7d), albeit at low levels, reflecting the short-lived
nature of secreted IL-1B. Both the pro-peptide and
mature forms of IL-1p are overproduced in dysferlin-
deficient muscle [30] where the second signal likely
arises from the dystrophic muscle milieu. The upregulated
IL-1PB gene expression and pro-peptide production could
be a consequence of IL-12, which was secreted from M1
macrophages and upregulated in dysferlin-deficient M1
macrophages (Fig. 5). One possibility for the effectiveness
of the IL-1p mAb could be the prevention of an autocrine
response in which low levels of IL-1f stimulates its own
gene expression, as was recently reported in A431 cells



Cohen et al. Skeletal Muscle RKXXXIXIXIRIX

[46]. Thus, treatment with the mAb IL-1 might block IL-
1B signaling and restore its own gene expression back
to baseline. However, how the loss of dysferlin results in
upregulated IL-1p and NFkB signaling in myoblasts
explanted from the pro-inflammatory environment of
dysferlin-deficient muscle remains unknown and will be
addressed in future studies.

Conclusions

We show for the first time that IL-1fB is inhibitory
towards muscle differentiation, implicating IL-1f as the
factor accounting for attenuated muscle regeneration in
dysferlin-deficient muscle. We further show that block-
ing IL-1p leads to a marked improvement of muscle dif-
ferentiation in vitro, suggesting that blockade of IL-1p
in vivo may be a therapeutic target for dysferlin defi-
ciency. Several IL-1f blocking monoclonal antibodies
are currently being developed for autoimmune disorders
including rheumatoid arthritis, cryopyrin-associated
periodic syndrome, diabetes, and gout [47-49]. Our data
provides the first evidence that inhibiting IL-13 may im-
prove muscle differentiation in dysferlin deficiency and
thus presents a novel therapeutic avenue for treating in-
flammatory myopathies.
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