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ActRII blockade protects mice from cancer
cachexia and prolongs survival in the
presence of anti-cancer treatments
Shinji Hatakeyama* , Serge Summermatter, Marie Jourdain, Stefan Melly, Giulia C. Minetti and Estelle Lach-Trifilieff

Abstract

Background: Cachexia affects the majority of patients with advanced cancer and is associated with reduced
treatment tolerance, response to therapy, quality of life, and life expectancy. Cachectic patients with advanced
cancer often receive anti-cancer therapies against their specific cancer type as a standard of care, and whether
specific ActRII inhibition is efficacious when combined with anti-cancer agents has not been elucidated yet.

Methods: In this study, we evaluated interactions between ActRII blockade and anti-cancer agents in CT-26 mouse
colon cancer-induced cachexia model. CDD866 (murinized version of bimagrumab) is a neutralizing antibody
against the activin receptor type II (ActRII) preventing binding of ligands such as myostatin and activin A, which are
involved in cancer cachexia. CDD866 was evaluated in association with cisplatin as a standard cytotoxic agent or
with everolimus, a molecular-targeted agent against mammalian target of rapamycin (mTOR). In the early studies,
the treatment effect on cachexia was investigated, and in the additional studies, the treatment effect on
progression of cancer and the associated cachexia was evaluated using body weight loss or tumor volume as
interruption criteria.

Results: Cisplatin accelerated body weight loss and tended to exacerbate skeletal muscle loss in cachectic animals,
likely due to some toxicity of this anti-cancer agent. Administration of CDD866 alone or in combination with
cisplatin protected from skeletal muscle weight loss compared to animals receiving only cisplatin, corroborating
that ActRII inhibition remains fully efficacious under cisplatin treatment. In contrast, everolimus treatment alone
significantly protected the tumor-bearing mice against skeletal muscle weight loss caused by CT-26 tumor. CDD866
not only remains efficacious in the presence of everolimus but also showed a non-significant trend for an additive
effect on reversing skeletal muscle weight loss. Importantly, both combination therapies slowed down time-to-
progression.

Conclusions: Anti-ActRII blockade is an effective intervention against cancer cachexia providing benefit even in the
presence of anti-cancer therapies. Co-treatment comprising chemotherapies and ActRII inhibitors might constitute a
promising new approach to alleviate chemotherapy- and cancer-related wasting conditions and extend survival
rates in cachectic cancer patients.
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Background
Cachexia affects the majority of patients with advanced
cancer and is associated with a poor outcome, a reduc-
tion in treatment tolerance, response to therapy, quality
of life, and survival rate. Skeletal muscle loss appears to
be the most prominent event in cancer cachexia and
cannot be fully reversed by conventional nutritional sup-
port [1, 2]. Recently, it has been shown in mouse models
of ectopic lung and colon cancer that direct myostatin
inhibition with a monoclonal antibody as well as indirect
inhibition using a soluble ActRIIB-Fc protects from
muscle wasting and even extends survival [3–6].
Several members of the transforming growth factor

beta (TGF-β) superfamily, including myostatin, activin
A, and growth differentiation factor 11 (GDF-11), are
known to negatively regulate skeletal muscle mass in an-
imals and humans throughout the lifecycle. The mech-
anism of myostatin signaling is complex due to
activation of several downstream pathways [7]. Myosta-
tin, activin, and GDF-11 bind to activin type II receptors
(ActRIIA or ActRIIB) and induce their assembly with
type I receptors. The absence of myostatin in developing
animals and humans results in a hyper-muscular pheno-
type with an increased number and size of muscle fibers
[8, 9]. Similarly, inhibition of myostatin action in adult
animals increases muscle mass, suggesting that myos-
tatin also restrains skeletal muscle mass in adulthood
[10–12]. In contrast, high levels of myostatin or acti-
vin A have been reported to promote cachexia and
the related muscle wasting in mice [13, 14]. Addition-
ally, elevated circulating levels of activin A have
clearly been correlated with the presence of cachexia
in cancer patients [15, 16].
Bimagrumab is a human monoclonal antibody devel-

oped to bind competitively to ActRII with greater affinity
than its natural ligands myostatin and activin A. It in-
duces skeletal muscle hypertrophy and protects from
dexamethasone-induced atrophy in mice [17] and is
shown to improve the disease condition in the patients
suffering from sporadic inclusion body myositis without
causing serious adverse events [18]. Although it has been
shown that the pharmacological blockade of ActRIIB li-
gands using a soluble receptor antagonist protects from
cancer-induced cachexia in mice [4, 6], the effect of dir-
ect inhibition at the receptor level using an antibody ap-
proach has not been explored. In addition, cachectic
patients with advanced cancer will receive anti-cancer as
a standard of care, and whether specific ActRII inhib-
ition remains efficacious when combined with anti-
cancer agents has not been elucidated yet.
In this report, the effect of a chimeric mouse version

of bimagrumab (CDD866) [17], which retains the bind-
ing, selectivity, and potency profile of bimagrumab while
reducing risk for immunogenicity and enabling long-

term profiling studies in mice, was evaluated in a CT-26
mouse colon cancer cachexia model to clarify interac-
tions between CDD866 and various chemotherapies.
Additionally, intervention at the activin type II receptors
level via the use of the neutralizing Ab CDD866 is effect-
ive at protecting from cancer-induced cachexia as re-
ported earlier through the blockade of circulating
ligands (anti myostatin Ab or soluble ActRIIB-Fc).
Platinum-based drugs, such as cisplatin, are cytotoxic,

intercalating agents that prevent DNA replication in a
very unspecific manner and which are typically used as
first-line therapy. Problematically, cisplatin has been
shown to precipitate body and muscle weight loss as a
side effect. We thus first aimed at evaluating the poten-
tial of CDD866 in countering cisplatin-mediated effects
on muscle wasting. In a follow-up study, we assessed the
impact of a more frequent dose of CDD866 and everoli-
mus, a new generation, less cytotoxic, molecular-
targeted agent, which inhibits the mammalian target of
rapamycin (mTOR), on cancer cachexia.

Methods
Reagents
Bimagrumab is a human, monoclonal antibody directed
against ActRII and originally identified from the Mor-
phoSys HuCal phage library. CDD866 is a murinized
version of bimagrumab, where the human Fc region of
the antibody has been replaced by a mouse Fc. CDD866
was produced in CHO cells at Novartis Pharma AG (Ba-
sel, Switzerland). Cisplatin (cis-diamminedichloro-plat-
inum (II)) was purchased from Sigma Aldrich (catalog
number 479306). Everolimus was synthesized at Novartis
Pharma AG.

Animal experiments
Studies described in this report were performed accord-
ing to the regulations effective in the Canton of Basel-
City, Switzerland, under the license number BS-2186.
Adult male Balb/cJRj mice at the age of 11 to 12 weeks
were purchased from Janvier Laboratories (Le Genest St
Isle, France). Mice were acclimated to the facility for
7 days. Animals were housed in groups of five or less an-
imals at 25 °C with a 12:12 h light-dark cycle. They were
fed a standard laboratory diet containing 18.2 % protein
and 3.0 % fat with an energy content of 15.8 MJ/kg
(NAFAG 3890, Kliba, Basel, Switzerland). Food and
water were provided ad libitum.
Mouse colon cancer cell line CT-26 was obtained from

Dr. Chatenay-Rivauday at Novartis Pharma AG (Basel,
Switzerland) and cultured in RPMI 1640 medium sup-
plemented with 10 % heat inactivated fetal bovine serum
and antibiotic-antimycotic solution at 37 °C with 5 %
CO2. CT-26 cells were harvested by treatment with
Accutase® (PAA Laboratories GmbH, Pasching, Austria)
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and suspended in a solution containing 50 % PBS and
50 % BD Matrigel™ Matrix without phenol red (catalog
number 356237, BD Biosciences, Bedford, MA, USA). A
0.1 mL of cell suspension containing 3 × 105 cells was in-
oculated subcutaneously into the left flank of mice.
When tumors were palpable (e.g., 60 mm3), mice bear-
ing tumors were randomized to produce groups bal-
anced with respect to mean and range of tumor sizes
and body weight. Treatments were initiated on the day
of randomization, which is referred to as day 0. Import-
antly, muscle wasting was apparent at the time-point of
treatment initiation as assessed by MRI of the calf mus-
cles (Additional file 1: Figure S1).
Therapeutic intervention studies were conducted to

evaluate the effect of CDD866, either alone or in com-
bination with anti-cancer agents. CDD866 was adminis-
tered at 20 mg/kg s.c., once weekly for combination with
cisplatin or twice weekly for combination with everoli-
mus in a volume of 5 mL/kg, and the last administration
occurred the day before necropsy. Cisplatin was admin-
istered at 1 mg/kg i.p. twice a week. A dose of 1 mg/kg
had been selected to avoid excessive body weight loss,
while maintaining a significant anti-tumor effect. Evero-
limus was administered at 5 mg/kg p.o. once daily, and
the last administration was a few hours before necropsy.
In the combination groups, cisplatin or everolimus treat-
ment was combined with once or twice weekly subcuta-
neous treatment of CDD866, respectively. Body weight
and tumor volume were measured two to three times
per week. At the end of the experiment, the mice were
euthanized with CO2, and tumor, tibialis anterior,
gastrocnemius-soleus-plantaris complex, and quadriceps
were collected and weighed.
Time-to-progression studies were performed as a

follow-up to assess if the combination of CDD866 and
cisplatin or everolimus slows progression of cancer cach-
exia in respect to interruption criteria which were de-
fined by body weight loss reaching 20 % or tumor
volume exceeding 1500 mm3. The treatment regimens
were identical to those used in the therapeutic interven-
tion studies. Body weight and tumor volume were mea-
sured two to three times per week in the first 2 weeks
and then every day until the end of experiment. The
mice were euthanized with CO2, when body weight loss
was close to 20 % or tumor volume exceeded 1500 mm3.

Protein analysis
Lysis buffer consisting of extraction reagent (Phospho-
safe; Novagen Inc., Madison, WI, USA) supplemented
with 1 % protease inhibitor cocktail (calbiochem#
539131) and 0.2 % SDS was added to frozen muscles
and homogenized using a Precellys FastPrep-Machine
FP20. Homogenates were separated by centrifugation for
20 min at 4 °C (14,000 rpm). Supernatants were

collected and protein contents measured a commercial
kit for protein determination (BCA Kit; Thermo Scien-
tific). Samples were diluted in SDS-PAGE sample buffer
and denatured for 10 min at 70 °C. Equal amounts of
protein were loaded per lane of 4 to 12 % and 8 % poly-
acrylamide gel (NuPAGE Bis-Tris gel; Invitrogen Corp.,
Carlsbad, CA, USA), separated by electrophoresis, and
then transferred onto nitrocellulose membranes. Mem-
branes were blocked in TBS with 0.1 % Tween and 5 %
w/v non-fat milk powder. Primary antibodies phospho-
SMAD3 (Millipore #04 1042 diluted 1:1000) and α-
tubulin (Sigma T6199 Diluted 1:5000) were incubated in
TBS with 0.1 % Tween 20 and 5 %w/v non-fat milk
powder and secondary antibodies in TBS with 0.1 %
Tween 20, 0.05 % SDS, and 5 % non-fat milk. Immuno-
reactivity was detected by SuperSignal West Femto Max-
imum Sensitivity Substrate (Thermo Scientific) and
exposed to film or acquired by FusionSpectra. Quantita-
tive determination of mTOR and IL-6 was performed
using an assay kit (catalog number K15170D for phos-
pho (Ser 2448)/total mTOR, K15048D for IL-6) from
MesoScale Discovery using a MesoScale Discovery
reader according to the manufacturer’s instruction.

Gene expression profiling
RNA samples were extracted from the gastrocnemius
muscle using the Trizol reagent (Invitrogen). Reverse
transcription was performed with random hexamers on
1 μg of total RNA using a high-capacity reverse tran-
scription kit (Applied Biosystems), and the reaction mix-
ture was diluted 100 times for amplification. PCRs were
performed in duplicates in 384-well plates on a CFX384
cycler (Bio-Rad, Hercules, CA, USA) using specific Taq-
Man probes (Applied Biosystems). Data were normalized
to two housekeeping genes using the ΔΔCT threshold
cycle (CT) method.

Statistical analysis
Values are expressed as mean ± SEM. Statistical ana-
lysis was carried out using Holm-Sidak’s multiple
comparison test following analysis of variance to
compare the treatment groups to the control groups
(non-tumor and tumor-bearing), anti-cancer agent
alone (cisplatin or everolimus) or CDD866 alone in
the therapeutic intervention study, and Dunn’s mul-
tiple comparisons test for time-to-progression study.
Differences were considered to be significant when
the probability value was <0.05. Statistical analyses
were performed by GraphPad Prism (GraphPad Soft-
ware, Inc., La Jolla, CA, USA). Body weight was
expressed as percentage change from day 0 as the
start of treatment. Tumor volumes in cubic millime-
ters were calculated according to the formula
(length × width2)/2. Muscle weight was normalized to
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the body weight on the day of cell inoculation (initial
body weight) and then expressed as percentage
change from the non-tumor control group.

Results
Cancer cachexia, i.e., muscle wasting associated with
cancer and also with some standard of care interven-
tions, dramatically affects patient quality of life, anti-
cancer treatment effectiveness, and overall survival. We
characterized our anti-cachexia agent, CDD866, and ex-
amined its potential benefit in the context of co-
therapies in CT-26 mouse colon cancer cachexia model,
in which tumor is insensitive to anti-ActRII intervention.
Chemotherapy constitutes a standard of care in many
cancers and is frequently used as first-line therapy. Intri-
guingly, certain chemotherapeutic agents, which are rou-
tinely administered to hinder tumor growth, precipitate
muscle wasting. Indeed, administration of cisplatin is
known to exacerbate body weight and muscle loss in
mouse cancer cachexia. We thus first evaluated whether
CDD866 could counter cisplatin-induced wasting with-
out affecting the efficacy of the chemotherapy.

CDD866 prevents cisplatin-induced body weight loss
Extensive body weight loss has emerged as a key deter-
minant of cancer-related death. We thus longitudinally
monitored body weight development in non-tumor and
tumor bearing mice (Fig. 1a, b). Ten days after starting the
treatment, tumor-bearing animals receiving cisplatin as a
mono-therapy had lost 20 % of their initial body weight
(Fig. 1b, c). By contrast, vehicle-treated, tumor-bearing an-
imals experienced a body weight decrease of 10 %, while
animals treated with CDD866 alone or in combination
with cisplatin exhibited moderate body weight losses of
only 3 and 5 %, respectively (Fig. 1b, c). In healthy control

animals, cisplatin did not affect body weight and CDD866
administration resulted in a marked body weight gain in
the absence and presence of cisplatin (Fig. 1a, c). These
data demonstrate that cisplatin, at an effective anti-tumor
dose (cf. also paragraph below), indeed precipitates body
weight loss in cachectic animals and that CDD866 signifi-
cantly reduces chemotherapy-induced wasting as well as
reducing the cancer-induced body weight loss.
Major concerns to be addressed in this study were po-

tential drug-drug interactions and specifically whether
CDD866 might reduce the efficacy of chemotherapy and
therefore impact tumor growth promotion. At treatment
initiation, the average tumor volume was ≥260 mm3

(Fig. 2a). CDD866 neither accelerated tumor progression
(Fig. 2a, b) nor did it impair the anti-tumor effect of cis-
platin (Fig. 2a, b). Thus, CDD866 is efficacious in redu-
cing chemotherapy-mediated body weight loss in cancer
cachexia without interfering with the anti-tumor effect
of cisplatin.

CDD866 antagonizes cisplatin-induced muscle wasting
Given the positive effect of CDD866 on body weight, we
next determined the impact of the various interventions
on individual skeletal muscles. In gastrocnemius-soleus-
plantaris complex, cisplatin exacerbated muscle weight
loss up to 25 % compared to 20 % for tumor alone.
CDD866 treatment tended to reduce muscle weight loss
to 13 % and this protective effect was preserved in the
presence of cisplatin (12 %) (Fig. 3b). A similar level of
protection was observed in quadriceps muscle (Fig. 3c).
Tibialis anterior benefited most from CDD866
treatment. In tibialis anterior, cisplatin-treated animals
experienced a muscle wasting of 34 % and co-
administration of CDD866 reduced muscle loss signifi-
cantly to 16 % (Fig. 3a).
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CDD866 in combination with cisplatin delays time-to-
progression
Extensive tumor growth and subsequent body weight loss
are important predictors of mortality in cancer patients.
We therefore wanted to evaluate whether the combination
of CDD866 and cisplatin has an impact on the length of
survival. For ethical reason, we abstained from classical sur-
vival studies. Instead, each mouse was individually eutha-
nized when experiencing either a body weight loss
exceeding 20 % of initial body weight or reaching a tumor
volume of 1500 mm3, which is referred to as time-to-
progression.
On average, animals receiving vehicle or cisplatin had

to be sacrificed after 12 days (Fig. 4a, b). CDD866-
treated animals had to be euthanized after 16 days,
which corroborates previous findings that CDD866
treatment reduced body weight loss but did not promote
tumor growth. The combined treatment of CDD866 and

cisplatin was superior to any other intervention tested.
Indeed, combination treatment extended time-to-
progression up to 21 days (Fig. 4b). Monitoring was
stopped after 39 days with 35 % of animals in the com-
bination group still not having reached one of the de-
fined interruption criteria (Fig. 4a).
Additional partitioning analyses showed that animals

treated with cisplatin were exclusively euthanized due to
body weight loss, while co-treatment with CDD866 sub-
stantially reduced dropout based on body weight loss
(Fig. 4c–e).

CDD866 and everolimus prevent cancer cachexia in an
additive way
In the next step, we selected everolimus, a new
generation molecular-targeted agent against mamma-
lian target of rapamycin (mTOR), as a combination
partner because mTOR is known to play a pivotal
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role in cell growth and proliferation. In addition,
treatment frequency for CDD866 was increased to
twice weekly to ensure significant anti-cachectic effect
when administered as single agent, and the
combination of everolimus and CDD866 was evalu-
ated in non-tumor mice as well as tumor-bearing
cachectic mice.
In the non-tumor bearing group, body weight gain was

not affected significantly by everolimus treatment. In
contrast, body weight gain increased significantly with
CDD866 treatment as expected (Fig. 5a, c). The effects
of CDD866 on body weight gain could not be attributed
to alterations in food intake. The body weight increase
was slightly lower in the combination group (Fig. 5a, c)
but still significantly different from everolimus alone and
not significantly different from CDD866 alone up to the
termination on day 14. In the CT-26 group, body weight
was significantly decreased in the tumor-bearing control
group on day 14 when compared to the non-tumor con-
trol group (Fig. 5b, c). CT-26-induced loss in body
weight was completely prevented by everolimus,
CDD866 and the combination of everolimus and
CDD866. The effect of CDD866 on body weight was
maintained in the presence of everolimus.

Everolimus slowed CT-26 tumor growth, and the
anti-tumor effect was maintained in the presence of
CDD866 (Fig. 6a). CT-26 tumor weight was signifi-
cantly reduced with everolimus treatment alone or in
combination with CDD866 (Fig. 6b). There was no
significant effect of CDD866 treatment on CT-26
tumor weight (Fig. 6b).
In the non-tumor bearing group, the weight of

tibialis anterior, gastrocnemius-soleus-plantaris com-
plex and quadriceps muscles was not affected by
everolimus treatment and significantly increased by
CDD866 treatment (Fig. 7a–c). The effect of
CDD866 on muscle weight was maintained in the
presence of everolimus. CT-26 tumor induced a sig-
nificant decrease in the weight of tibialis anterior,
gastrocnemius-soleus-plantaris complex, and quadri-
ceps muscles compared to the non-tumor bearing
control group (Fig. 7a–c). CT-26-induced muscle
weight loss was significantly reduced by everolimus
or CDD866 treatment. Interestingly, the combination
of everolimus and CDD866 appeared to reverse skel-
etal muscle weight loss in an additive manner, and
this combined treatment effect was significantly dif-
ferent from the everolimus treatment alone.
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CDD866 in combination with everolimus delays time-to-
progression
In addition to the beneficial effects of everolimus and
CDD866 on CT-26-induced cachexia in the therapeutic
intervention study, the effect of these treatments on pro-
gression of cancer and the associated cachexia was eval-
uated, using the same criteria as in the prior cisplatin
combination study. In the CT-26 control group, the me-
dian days elapsed until an interruption criterion (time-
to-progression) was 17.5 days after randomization and
treatment start (Fig. 8a, b). Everolimus treatment signifi-
cantly prolonged time-to-progression to 23 days mainly
due to its anti-tumor effect, while CDD866 showed only
a non-significant trend of extension to 21 days. The lack
of significance of CDD866 on time-to-progression is ex-
plained by the fact that, although the treatment was
highly successful in preventing body weight loss, it did

not inhibit tumor growth, which was the second inter-
ruption criterion. Importantly, the combination of evero-
limus and CDD866 appeared to further slow time-to-
progression to 28.5 days, an effect which was significant
compared to the CT-26 control group.
When the distribution of interruption criteria was

compared among groups, tumor volume was applied in
the treatment groups in all cases with an exception of
one case in everolimus treatment alone and one survivor
in the combination group, while body weight contrib-
uted to more than half of termination in the CT-26 con-
trol group (Fig. 8c–e).

CDD866 and everolimus modulate ActRII and mTOR
signaling pathways
Since the combination of everolimus and CDD866 ap-
peared to be the most efficacious treatment, selected key
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signaling events were examined. As expected with
ActRII blockade with CDD866, phosphorylation of
SMAD3 was significantly reduced in the CDD866 treat-
ment alone and in combination with everolimus (Fig. 9a,
b). Total protein levels and phosphorylation of mTOR
was significantly inhibited in the everolimus treatment

alone and in combination with CDD866, as an indicator
of everolimus inhibition through S6K (Fig. 10a, b). Fur-
thermore, inflammation status was evaluated by analyz-
ing levels of inflammatory cytokine IL-6 which are
known to be increased in the CT-26-induced cachexia
conditions. IL-6 was significantly increased in the
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tumor-bearing control, and the everolimus treatment
alone or in combination with CDD866 significantly re-
duced IL-6, but the CDD866 treatment alone did not
show a significant effect on IL-6 (Fig. 11a). Moreover,
in CT-26 tumor bearing mice, messenger RNA
(mRNA) levels of atrogenes, MAFbx, and MuRF1
were significantly up-regulated in skeletal muscles,
and those increases were significantly inhibited by
everolimus or by the combination with CDD866 while
CDD866 only displayed a trend towards reducing
MuRF1 (Fig. 11b, c). CDD866 treatment inhibited
MAFbx up-regulation significantly but partially,

although everolimus or CDD866 treatment signifi-
cantly reduced CT-26-induced muscle weight loss.

Discussion
The ActRII neutralizing antibody CDD866 and anti-
cancer agents, cisplatin and everolimus, were evaluated
when administered alone or in combination in a model
of CT-26 mouse colon cancer-induced cachexia, to as-
sess whether CDD866 remains efficacious upon co-
administration and whether such a combination is su-
perior to the respective mono-therapy in delaying
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disease progression. All therapeutic interventions were
initiated after the onset of muscle wasting.
Despite substantial tumor growth inhibition, cisplatin

accelerated body weight loss in cachectic animals, likely
due to the high toxicity of the anti-cancer agent.
CDD866 fully prevented cisplatin-mediated body weight
loss demonstrating that ActRII inhibition remained effi-
cacious in the presence of cisplatin. Cisplatin treatment
alone and also in combination with CDD866 reduced
CT-26 tumor weight to similar levels, which underlines
that the anti-cancer effect of cisplatin was not negatively
affected by CDD866.
Consistently, cisplatin treatment did not improve CT-

26 tumor-induced skeletal muscle wasting but rather
tended to exacerbate skeletal muscle loss. In contrast,
administration of CDD866 alone or in combination with
cisplatin protected from skeletal muscle weight loss
compared to animals receiving only cisplatin, corrobor-
ating further that ActRII inhibition remains fully effica-
cious under cisplatin treatment. These results thus
demonstrate that CDD866 in combination with cisplatin
counters muscle wasting in cachectic animals when
compared to cisplatin treatment alone. Noteworthy,
CDD866 was administered only once per week and mice
received only two injections throughout the entire study
(apart from the survival studies). Since elevated release
of activin A has been reported from cancer tissues [19]
and associated with cancer cachexia phenotype in pa-
tients [15], a higher dosing or frequency of dosing of
CDD866 might be required in cancer cachexia models
to elicit more pronounced or maximal responses. In-
deed, stronger muscle wasting sparing was noticed with
CDD866 alone in the combination study with everoli-
mus under a more frequent dosing regimen.
Cancer patients with low muscle mass are at increased

risk for treatment-related toxicities from chemotherapy

and show increased overall mortality [20]. Consistently,
CDD866 significantly delayed disease progression largely
by increasing muscle mass. Time-to-progression in can-
cer cachexia was even further retarded by concomitant
therapy with CDD866 and cisplatin, which simultan-
eously countered muscle wasting and inhibited tumor
growth.
Since mTOR is known to play a pivotal role in cell

growth and proliferation, mTOR inhibition by everolimus
exhibited significant anti-tumor effect as expected, both in
the absence and presence of CDD866. This result clearly
shows that anti-cancer effect of everolimus is not affected
negatively by ActRII inhibition with CDD866. In line with
body weight decreases caused by CT-26 tumor, skeletal
muscle weight was significantly decreased in the CT-26
control group. Everolimus or CDD866 treatment alone sig-
nificantly protected the tumor-bearing mice against skeletal
muscle weight loss caused by CT-26 tumor. Interestingly,
ActRII inhibition by CDD866 not only remained efficacious
in the presence of everolimus but also showed a non-
significant trend for an additive effect at reversing skeletal
muscle weight loss, despite the fact that mTOR is required
for normal muscle growth [21, 22]. Similarly, in the non-
tumor-bearing mice, there was no effect on body weight
upon everolimus treatment, while CDD866 increased body
weight significantly. The effect of CDD866 on body weight
was maintained in the presence of everolimus, clearly
showing that the mTOR inhibition did not alter the effect
of CDD866 on body weight. Also, the muscle anabolic re-
sponse observed upon CDD866 treatment in non-tumor
bearing mice was significant and not affected by mTOR in-
hibition at dose clearly effective on tumor.
Everolimus treatment alone prolonged time-to-

progression as a surrogate for survival and also CDD866
showed a trend of extension. Importantly, the combin-
ation of everolimus and CDD866 appeared to further slow-
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down time-to-progression. Each treatment worked comple-
mentary to exert a beneficial effect, with everolimus inhibit-
ing tumor growth and CDD866 preventing cachexia. A
trend for an additive anti-cachectic effect observed in the
combination of CDD866 and everolimus would warrant
further exploration as to how ActRII blockade and mTOR
inhibition may positively interact on skeletal muscle under-
going cachexia.
It is reported that mTORC1 is activated in denervation-

induced skeletal muscle atrophy [23–26] and further down-
stream activation of MAFbx and MuRF1 to promote atro-
phy, but the anti-atrophy effect of mTOR inhibition by
rapamycin treatment was inconclusive [25, 26]. Activation
of mTOR is also reported in other pathological conditions,
such as aging [27], obesity, insulin resistance, and diabetes
[28], where mTOR inhibition seems to be beneficial [29]. In
the present study, there was a significant increase in phos-
phorylation as well as the total amount of mTOR in skeletal
muscles of tumor-bearing mice. Therefore, the everolimus
benefit observed at countering muscle wasting may result
for some degree from a direct mTOR inhibition at the
muscle level, while another part may come from its anti-
tumor efficacy. In addition, although everolimus alone re-
duced MAFbx and MuRF1 down to baseline, an additional
anti-cachexia benefit could be observed when combined
with ActRII blockade.

Conclusions
Collectively, our studies thus demonstrate that blocking
ActRII with CDD866, even after onset of muscle mass loss,
partially reverses cancer—as well as cisplatin-induced wast-
ing and clearly delays time-to-progression in cancer cach-
exia. CDD866 was also effective in preventing CT-26
tumor-induced systemic cachexia in the presence of evero-
limus. Importantly, there was no obvious deleterious inter-
action between CDD866 and anti-cancer agents such as
cisplatin and everolimus. Together with data demonstrating
that blockade of the myostatin/ActRIIB pathway is highly
beneficial in models of cancer-induced cachexia [3–6], our
results indicate that ActRII blockade might be beneficial in
cachectic cancer patients which are or have been exposed
to chemotherapies.

Additional file

Additional file 1: Figure S1. Decreased calf muscle volume in CT-26
colon cancer-bearing mice. Calf muscle volume assessed non-invasively
by MRI at the time-point of treatment initiation. Values are expressed as
percentage change from basal ± SEM; **P < 0.01 versus non-tumor control.
(PDF 28 kb)
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