Skip to main content
Fig. 2 | Skeletal Muscle

Fig. 2

From: Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration

Fig. 2

Syndecan-3 loss does not affect myofiber fragility in dystrophic muscle. a The TA muscles of non-dystrophic wild type mice (WT), non-dystrophic Sdc3 −/− mice (S3−/−), and dystrophic mice either wild type for syndecan-3 (4cv;S3+/+) or syndecan-3 null (4cv;S3−/−) were assessed for contraction-induced muscle injuries. b, c Dystrophin protein levels (b, western blot) and gene expression (c, RT-PCR) are not restored in mdx 4cv mice lacking syndecan-3. d, e Syndecan-3 loss modestly improves muscle force transduction in mdx 4cv mice. Specific force (e) but not peak force (d) elicited by mdx 4cv ;Sdc3 −/− TA muscles is increased compared to mdx 4cv ;Sdc3 +/+ TA muscles. Non-dystrophic Sdc3 +/+ and Sdc3 −/− TA muscles showed no significant difference in peak or specific force and were averaged altogether and plotted as control (CTRL, white bar in d and e). f, g Syndecan-3 loss does not prevent compensatory hypertrophy and increased muscle mass in mdx 4cv mice. Glutei and calves are highlighted in g and indicated by white arrowheads. h Myofiber cross-sectional area in mdx 4cv ;Sdc3 −/− muscles (white bars) compared to mdx 4cv ;Sdc3 +/+ muscles (black bars). Inset numbers indicate the median myofiber cross-sectional area in square micrometers. i, j Increased myonuclear accretion in mdx 4cv ;Sdc3 −/− muscles compared to mdx 4cv ;Sdc3 +/+ muscles. The fractions of centrally nucleated and peripherally nucleated myofibers were calculated and plotted for mdx 4cv ;Sdc3 −/− and mdx 4cv ;Sdc3 +/+ muscles (i) and showed that the number of centrally nucleated myofibers containing two or more nuclei was increased (j). Error bars are S.E.M. ** = p < 0.01, * = p < 0.05, # = p > 0.05

Back to article page