Skip to main content
Fig. 2 | Skeletal Muscle

Fig. 2

From: Muscle injury-induced hypoxia alters the proliferation and differentiation potentials of muscle resident stromal cells

Fig. 2

mrSCs from damaged muscle are more prone to osteogenic differentiation. a Representative micrographs of mrSCs isolated from control (Saline) and damaged (CTX) muscles cultured for 7 days in adipogenic (Adipo) or osteogenic (OsM) differentiation medium. mrSCs from the damaged muscle displayed a net decrease in adipogenic potential compared to those from the control muscle, as revealed by Oil Red O staining. In terms of osteogenic differentiation, no mineralization was observed in mrSCs from the control or the damaged muscle. However, the addition of 1 nM BMP9 to the osteogenic medium caused greater mineralization of mrSCs from the damaged muscle than of mrSCs from the control muscle, as revealed by Alizarin Red S staining. The results are representative of four independent experiments (n = 3–4/experiment). b Graph showing relative ALP activity (to untreated cells) of mrSCs isolated from the control (saline) and damaged (CTX) muscles treated for 3 days with increasing concentrations of BMP2 or BMP9 (mean ± SEM of a representative experiment, four independent experiments, n = 4–6/experiment). BMP9 induced a significant increase in maximum enzymatic activity compared to BMP2 for both cell preparations (saline and CTX). In addition, the minimum dose that induced a significant increase in ALP activity was lower with BMP9 than with BMP2. Lastly, mrSCs from the damaged muscle reacted more strongly to BMP9 and BMP2 than mrSCs from the control muscle. The dots represent experimental data while the lines represent the results of mathematical modeling of the ALP activity measurements

Back to article page