Skip to main content
Fig. 9 | Skeletal Muscle

Fig. 9

From: mRNP granule proteins Fmrp and Dcp1a differentially regulate mRNP complexes to contribute to control of muscle stem cell quiescence and activation

Fig. 9

Knockdown of Fmrp and Dcp1a show similar effects on differentiation. Proliferating myoblasts (MB) were treated with siRNAs (Scr, siDcp1a, siFmr1) for 18 h and induced to differentiate for 48 h. a Both Fmr1 and Dcp1a knockdowns show reduced number of Myogenin+ nuclei. Upper Panel: Immunofluorescence of Myogenin (MyoG) and Fmrp in Scr, siFmr1 and siDcp1a. Scale bars represent 35 μm except in magnified panels where scale bars represent 17 μm. Lower panel: quantification based on 3 replicates, with > 600 nuclei scored per condition. b Knockdown of either Fmrp or Dcp1a affects fusion of myoblasts as shown by reduction in fusion index. Upper panel: immunofluorescence of myosin heavy chain (Myosin HC) and Fmrp in Scr, siFmr1, and siDcp1a. Lower panel: fusion index calculated as the ratio of the number of nuclei in myotubes with 2 or more nuclei over the total number of nuclei × 100 for n = 3 biological replicates. More than 850 nuclei were counted per condition. For a and b * p < 0.05, ** p < 0.01. Two-tailed Student’s t test was performed. c Representative western blots (from 3 biological replicates) of Myogenin (MyoG) and Myosin Heavy Chain (Myosin HC) proteins in MB and MT; Gapdh is internal control. d Densitometry of western blots of Myogenin (MyoG) and Myosin Heavy Chain (Myosin HC) proteins in MB and MT in c; Gapdh is loading control. Western blot analysis decreased expression of both myogenin and myosin when either Fmrp or Dcp1a expression is reduced. Two-tailed Student’s t test was performed, ** p < 0.01, *** p < 0.001. Values represent the mean + SD in 3 biological replicates

Back to article page