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Comparison of multiple transcriptomes
exposes unified and divergent features of
quiescent and activated skeletal muscle
stem cells
Natalia Pietrosemoli1†, Sébastien Mella2,3†, Siham Yennek2,3,6†, Meryem B. Baghdadi2,3†, Hiroshi Sakai2,3†,
Ramkumar Sambasivan4†, Francesca Pala2,3, Daniela Di Girolamo2,5 and Shahragim Tajbakhsh2,3*

Abstract

Background: Skeletal muscle satellite (stem) cells are quiescent in adult mice and can undergo multiple rounds of
proliferation and self-renewal following muscle injury. Several labs have profiled transcripts of myogenic cells during
the developmental and adult myogenesis with the aim of identifying quiescent markers. Here, we focused on the
quiescent cell state and generated new transcriptome profiles that include subfractionations of adult satellite cell
populations, and an artificially induced prenatal quiescent state, to identify core signatures for quiescent and
proliferating.

Methods: Comparison of available data offered challenges related to the inherent diversity of datasets and
biological conditions. We developed a standardized workflow to homogenize the normalization, filtering, and
quality control steps for the analysis of gene expression profiles allowing the identification up- and down-regulated
genes and the subsequent gene set enrichment analysis. To share the analytical pipeline of this work, we developed
Sherpa, an interactive Shiny server that allows multi-scale comparisons for extraction of desired gene sets from the
analyzed datasets. This tool is adaptable to cell populations in other contexts and tissues.

Results: A multi-scale analysis comprising eight datasets of quiescent satellite cells had 207 and 542 genes commonly
up- and down-regulated, respectively. Shared up-regulated gene sets include an over-representation of the TNFα
pathway via NFKβ signaling, Il6-Jak-Stat3 signaling, and the apical surface processes, while shared down-regulated
gene sets exhibited an over-representation of Myc and E2F targets and genes associated to the G2M checkpoint and
oxidative phosphorylation. However, virtually all datasets contained genes that are associated with activation or cell
cycle entry, such as the immediate early stress response genes Fos and Jun. An empirical examination of fixed and
isolated satellite cells showed that these and other genes were absent in vivo, but activated during procedural isolation
of cells.

Conclusions: Through the systematic comparison and individual analysis of diverse transcriptomic profiles, we identified
genes that were consistently differentially expressed among the different datasets and shared underlying biological
processes key to the quiescent cell state. Our findings provide impetus to define and distinguish transcripts associated
with true in vivo quiescence from those that are first responding genes due to disruption of the stem cell niche.
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Background
Most adult stem cell populations identified to date are
in a quiescent state [1]. Following tissue damage or
disruption of the stem cell niche, skeletal muscle satellite
(stem) cells transit through different cell states from re-
versible cell cycle exit to a postmitotic multi-nucleate
state in myofibres. In mouse skeletal muscle, the tran-
scription factor Pax7 marks satellite cells during quies-
cence and proliferation, and it has been used to identify
and isolate myogenic populations from skeletal muscle
[2, 3]. Myogenic cells have also been isolated by
fluorescence-activated cell sorting (FACS) using a variety
of surface markers, including α7-integrin, VCAM, and
CD34 [4]. Although these cells have been extensively
studied by transcriptome, and to a more limited extent
by proteome profiling, different methods have been used
to isolate and profile myogenic cells thereby making
comparisons laborious and challenging. To address this
issue, it is necessary to generate comprehensive catalogs
of gene expression data of myogenic cells across distinct
states and in different conditions.
Soon after their introduction two decades ago, high-

throughput microarray studies started to be compiled
into common repositories that provide the community
access to the data. Several gene expression repositories
for specific diseases, such as the Cancer Genome Atlas
(TCGA) [5], the Parkinson’s disease expression database
ParkDB [6], or for specific tissues, such the Allen Hu-
man and Mouse Brain Atlases [7, 8] among many, have
been crucial in allowing scientists the comparison of
datasets, the application of novel methods to existing
datasets, and thus a more global view of these biological
systems.
In this work, we generated transcriptome datasets

of satellite cells in different conditions and performed
comparisons with published datasets. Due to the diver-
sity of platforms and formats of published datasets, this
was not readily achievable. For this reason, we developed
an interactive tool called Sherpa (SHiny ExploRation
tool for transcriPtomic Analysis) to provide comprehen-
sive access to the individual datasets analyzed in a
homogeneous manner. This web server allows users to
(i) identify differentially expressed genes of the individ-
ual datasets, (ii) identify the enriched gene sets of the
individual datasets, and (iii) effectively compare the
chosen datasets. Sherpa is adaptable and serves as a
repository for the integration and analysis of future tran-
scriptomic data. It has a generic design that makes it
applicable to the analysis of other transcriptome datasets
generated in a variety of conditions and tissues.
We analyzed gene expression profiles (GEPs) of acti-

vated and quiescent states of mouse satellite cells derived
from three new experimental setups and six publicly avail-
able microarray datasets to define a consensus molecular

signature of the quiescent state. This large compendium
of expression data offers the first comparison and integra-
tion of nine independent studies of the quiescent state of
mouse satellite cells, and we developed Sherpa, a shiny
interactive web server to provide a user-friendly explor-
ation of the analysis. In addition, using a protocol for the
fixation and capture of mRNA directly from the tissue
without the alteration in gene expression that could arise
during the isolation procedure, which typically takes
several hours with solid tissues, we have empirically tested
the expression of transcripts. Strikingly, several genes,
including members of the Jun and Fos family, were found
to be present in isolated satellite cells using conventional
isolation procedures, but they were absent in vivo. These
findings, and the unique atlas that we report, will un-
doubtedly improve our current understanding of the
molecular mechanisms governing the quiescent state and
contribute to the identification of critical regulatory genes
involved in different cell states.

Methods
Individual dataset transcriptomic analysis
The analysis comprised a total of nine datasets, three
novel microarray datasets and six publicly available data-
sets [9–14], choosing only samples with overall similar
conditions. All datasets were analyzed independently
following the same generalized pipeline based on ad hoc
R-implemented scripts (Fig. 2).

Gene expression profiles
The microarray data compared activated satellite cells
(ASCs) and quiescent satellite cells (QSCs) from differ-
ent experiments. Table 1 describes the public datasets
that were taken into account for the analysis with the
GEO [15] (Gene Expression Omnibus) identifications,
references, and sample distribution. The new mouse micro-
array datasets include the following comparisons: young
adult Quiescent(adult)/Activated (postnatal day 8) and
Quiescent [high/low]/D3Activated [high/low], and Fetal_-
NICD [E17.5/E14.5]. Table 1 presents all sample details.

Animals, injuries, and cell sorting
Animals were handled according to the national and
European Community guidelines and the ethics commit-
tee of the Institut Pasteur (CTEA) in France. For isolation
of quiescent satellite cells, Tg: Pax7-nGFP mice (6–
12 weeks) [2] were anesthetized prior to the injury. Tibi-
alis anterior (TA) muscles were injured with notexin
(10 μl–10 μM; Latoxan). Cells were then isolated by FACS
using FACS ARIA III (BD Biosciences), MoFlo Astrios
and Legacy (Beckman Coulter) sorters. Pax7Hi and Pax7Lo

cells correspond to the 10% of cells with the highest and
the lowest expression of nGFP, respectively, as defined
previously [3].
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For isolation of activated satellite cells, TA muscles (day 3
postinjury (D3) and non-injured) were collected and sub-
jected to 4–5 rounds of digestion in a solution of 0.08% col-
lagenase D (Roche) and 0.1% trypsin (Gibco #31966) diluted
in DMEM-1% P/S (Invitrogen) supplemented with DNAse I
at 10 μg/ml (Roche, 11284932001) [2, 3]. Pax7Hi and Pax7Lo

cells correspond to the 10% of cells with the highest and the
lowest expression of nGFP, respectively, as defined previously
[3].
Skeletal muscle progenitors were obtained also from

the forelimbs of E14.5 and E17.5 fetuses of Myf5CreCAP/
+:R26Rstop-NICD-nGFP/+ [16] compound mice. Tissues were
dissociated in DMEM, 0.1% collagenase D (Roche,
1088866), 0.25% trypsin (GIBCO, 15090-046), DNaseI
10 μg/ml for three consecutive cycles of 15 min at 37 °C
in a water bath under gentle agitation. For each round, a
supernatant containing dissociated cells was filtered
through 70-μm cell strainer, and trypsin was inhibited
with foetal calf serum (FCS). Pooled supernatants from
each round of digestion were centrifuged at 1600 rpm
for 15 min at 4 °C, and pellet was re-suspended in cold
DMEM/1% PS/2%FCS and filtered through 40-μm cell
strainer.
In other experiments, skeletal muscles from the limbs,

body wall, and diaphragm were collected from pups at
postnatal day 8 (P8, mitotically active satellite cells) and
4–5 weeks old mice (quiescent satellite cells) of
Pax7nGFP/+ knock-in line [17]. Cells were isolated by
FACS based on NICD-GFP or Pax7-nGFP intensity,
using BD FACS ARIA III and MoFlo Astrios sorters.

Microarray sample preparation
Total mRNAs were isolated using Qiagen RNAeasy® Mi-
cro Kit according to the manufacturer’s recommenda-
tions; 5 ng of total RNA was reverse transcribed and
amplified following the manufacturer’s protocols
(Ovation Pico WTA System v2 (Nugen Technologies,
Inc. 3302-12); Applause WTA Amp-Plus System (Nugen
Technologies, Inc. 5510-24)), fragmented and biotin la-
beled using the Encore Biotin Module (Nugen Tech-
nologies, Inc. 4200-12). Gene expression was determined
by hybridization of the labeled template to GeneChip
microarrays Mouse Gene 1.0 ST (Affymetrix).
Hybridization cocktail and posthybridization processing
were performed according to the “Target Preparation for
Affymetrix GeneChip Eukaryotic Array Analysis” proto-
col found in the appendix of the Nugen protocol of the
fragmentation kit. Arrays were hybridized for 18 h and
washed using fluidics protocol FS450 0007 on a Gene-
Chip Fluidic Station 450 (Affymetrix) and scanned with
an Affymetrix GeneChip Scanner 3000, generating CEL
files for each array. Three biological replicates were run
for each condition.

Western blot analysis
Total protein extracts from satellite cells isolated by FACS
were run on a 4–12% Bis-Tris Gel NuPAGE (Invitrogen)
and transferred on Amersham Hybond-P transfer mem-
brane (Ge Healthcare). The membrane was then blocked
with 5% non-fat dry milk in TBS; probed with anti-JunD
(329) (1:1000, sc-74 Santa Cruz Biotechnology Inc.), anti-
JunB (N-17) (1:1000, sc-46 Santa Cruz Biotechnology
Inc.), or anti-c-Jun (H-79) (1:1000, sc-1694 Santa Cruz
Biotechnology Inc.) overnight; washed and incubated with
HRP-conjugated donkey anti-rabbit IgG secondary anti-
body (1:3000); and detected by chemiluminescence (Pierce
ECL2 western blotting substrate, Thermo Scientific) using
the Typhoon imaging system. After extensive washing, the
membrane was incubated with anti-Histone H3 antibody
(ab1691, 1:10,000; abcam) as a loading control. All West-
ern blots were run in triplicate, and bands were quanti-
tated in one representative gel. Quantification was done
using ImageJ software.

Isolation of fixed mouse muscle stem cells and real-time
PCR
For empirical analysis of genes by RT-qPCR (e.g., Jun
and Fos), skeletal muscles were fixed immediately in
0.5% for 1 h in paraformaldehyde (PFA) using a protocol
based on the notion that transcripts are stabilized by
PFA fixation [18, 19]. Briefly, PFA fixed and unfixed
skeletal muscles were minced as described [4]; fixed
samples were incubated with collagenase at double the
normal concentration, and mRNA was isolated following
FACS based on size, granulosity, and GFP levels using a
FACS Aria II (BD Bioscience). Total RNA was extracted
from fixed cells with RecoverAll™ (Total Nucleic Acid
Isolation Kit Ambion, Thermo Fisher), according to
manufacturer instructions. cDNA was prepared by
random-primed reverse transcription (Super-Script II,
Invitrogen, 18,064–014), and real-time PCR was done
using SYBR Green Universal Mix (Roche, 13608700)
StepOne-Plus, Perkin-Elmer (Applied Biosystems). Spe-
cific primers for each gene were designed, using the Pri-
mer3Plus online software, to work under the same
cycling conditions. For each reaction, standard curves
for reference genes were constructed based on six four-
fold serial dilutions of cDNA. All samples were run in
triplicate. The relative amounts of gene expression were
calculated with RLP13 expression as an internal standard
(calibrator). RT-qPCR primers used appear in Add-
itional file 6: Table S2.

Normalization, quality control, and filtering of GEPs
Gene expression profiles (GEPs) were processed using
standard quality control tools to obtain normalized,
probeset-level expression data. For all raw datasets de-
rived from affymetrix chips, Robust Multi-Array Average
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expression measure (rma) was used as normalization
method using the affy and the oligo R packages [20, 21].
All analyses were preferentially conducted at the probe-
set level. Probesets were annotated to gene symbol and
gene ENTREZ using chip-specific annotations. For gene
level results, the probeset with the highest expression
variability was selected to represent the corresponding
gene. Quality controls were performed on raw data using
relative log expression (RLE) and Normalized Unscaled
Standard Errors (NUSE) plots from the affyPLM R pack-
age [22]. Sample distribution was examined using hier-
archical clustering of the Euclidean distance and
principal component analysis from the stats [23] and
FactoMineR R packages [24] (see Additional file 1: Figure
S1 for the resulting plots for dataset Quiescent [high/
low]/D3Activated [high/low]). The resulting plots of the
remaining datasets are not shown, but they presented
similar trends, which can be explored through the inter-
active web server Sherpa.

Differential expression analysis
Each dataset was individually analyzed to identify genes
showing significant differential expression (DEGs)
between the ASC and the QSC (gene level analysis in
Fig. 1; differential analysis in Fig. 2). This analysis was
performed using the linear model method implemented
in the Limma R package [25]. The basic statistic was the
moderated t-statistic with a Benjamini and Hochberg’s
multiple testing correction to control the false discovery
rate (FDR) [26].

Gene set enrichment analysis on individual sets
Each dataset was tested for gene set enrichment
independently, using the CAMERA competitive test im-
plemented in the Limma R package [27] and three gene
set collections from the mouse version of the Molecular
Signatures Database MSigDB v6 [28, 29]: (1) Hallmark
gene sets (H), which summarize and represent specific
well-defined biological states or processes displaying a
coordinate gene expression; (2) Kyoto Encyclopedia of
Genes and Genomes (KEGG) canonical pathways (C2
CP:KEGG), derived from the Kyoto Encyclopedia of Genes
and Genomes [30]; and (3) Reactome canonical pathways
(C2 CP:Reactome) from the curated and peer reviewed
pathway database [31] (gene set analysis in Figs. 1 and 2).

Multiple set analysis: determination of the quiescent
signature
The combinatorial landscape of datasets was explored
using the SuperExactTest [32] and the UpSetR [33] R
packages to test and visualize the intersection of the
datasets. Additionally, the Jaccard index [34] of similarity
was calculated to assess the extent of similarity between
statistically differentially expressed genes (DEGs) of each
pair of datasets. A significance ranking, based on several
criteria, was calculated for each individual dataset to
determine its presence or absence in the final dataset
ensemble, which was used for determining the gene
signature. Once the dataset ensemble was defined, the
overlapping differentially up- and down-regulated genes

Fig. 1 General framework of the analysis: an individual dataset analysis followed by a multi-set analysis. The individual dataset analysis consisted of (i)
the analysis of gene expression profiles (GEPs) of each dataset, including normalization, filtering and quality control check of each raw dataset, and the
differential analysis to identify dataset-specific differentially expressed genes (DEGs), (ii) the Gene Set Enrichment Analysis (GSEA) performed in the gene
set space. The GSEA consisted in identifying enriched pathways from three gene sets of the MSigDB collection [29] (Hallmark gene sets, CP: KEGG gene
sets and CP: Reactome gene sets); (iii) the multi-set analysis to assemble a study-independent gene signature, i.e., a list of genes specific to the
quiescence state
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(DEGs, as defined by the adjusted P value ≤ 0.05) were
used to build the quiescent signature.

Gene set enrichment analysis on the quiescent signature
An over-representation analysis (ORA) [35] was applied
to the quiescent signature using the previously described
gene collection (Hallmark, Kegg, Reactome). For this

purpose, commonly up-regulated or down-regulated
genes were used in a one-sided Fisher’s exact test imple-
mented in R script with a Benjamini and Hochberg’s
multiple testing correction of the P value to determine
the enriched gene sets and the direction of such
enrichment.

Web application: Sherpa
We developed an interactive web application for the
exploration, analysis, and visualization of the individual
datasets and their combination (http://sherpa.pasteur.fr).
This application allows the user to effectively and
efficiently analyze the individual datasets one by one (in-
dividual dataset analysis) or as an ensemble of datasets
(multi-set analysis) and was developed with the Shiny R
package [36].

Results
This study involves an individual dataset analysis followed
by a multi-set analysis (Fig. 1). First, each raw dataset was
normalized, filtered, and subjected to the same quality
controls and checks. Gene-level differential analysis and
gene set enrichment analysis were then performed (Fig. 2).
Finally, a multi-set analysis assembled a platform-
independent list of genes specific to the quiescent state.
When analyzing multiple microarray GEPs, however, sev-
eral issues needed to be addressed regarding the experi-
mental setup, the microarray platforms and the laboratory
conditions [37]. First, the individual studies, even if re-
lated, had different aims, experimental designs, and cell
populations of interests (e.g., developmental stage and
gender of mice). Second, the different microarray plat-
forms contained different probes and probesets with spe-
cific locations and alternative splicing that might produce
different expression results [38]. Finally, sample prepar-
ation, protocols, and dates of extractions might have influ-
enced array hybridization and introduced bias [39]. This
experimental heterogeneity required critical data process-
ing to ensure statistically meaningful assumptions to drive
biological interpretation and compile gene signatures. For
this, we used a standardized workflow to reduce the tech-
nical variations between datasets. Specifically, this work-
flow applied (i) the same normalization method for the
experiments having the same microarray chips, (ii) the
same quality control criteria to discard poor-quality sam-
ples, (iii) the same aggregation method for summarizing
probesets into single genes, and (iv) the same filtering in
all datasets. The filtering of the datasets was based on the
same significance criteria which included a minimum
number of differentially expressed genes, the presence of
genes known to be differentially expressed between quies-
cent and activated states from previous studies, and a
similarity measure among the datasets. Table 1 summa-
rizes the main biological and experimental variations in

Fig. 2 Workflow of the standardized individual dataset analysis. The
analysis of the nine datasets was performed in a consistent manner
for each dataset using ad hoc R scripts. It included the first step of
data preparation followed by a second step of data analysis. GEPs
were processed using standard quality control tools to obtain
normalized, probeset-level expression data. For raw datasets derived from
affymetrix chips, Robust Multi-Array Average expression measure (rma)
was used as normalization method. All analyses were conducted at
probeset level. Probesets were annotated to gene symbol and gene
ENTREZ using chip-specific annotations. Quality controls were performed
on raw data using RLE and NUSE plots. The distribution of the QSC and
ASC samples according to their GEPs was explored using hierarchical
clustering of the Euclidean distance and principal component analysis
(Additional file 1: Figure S1). Statistically, differentially expressed genes
(DEGs) were identified between the ASC and the QSC groups using the
linear model implemented by the Limma R package [10]. Gene set
enrichment analysis was based on three gene set collections from the
mouse version of the Molecular Signatures Database MSigDB
v6.0 [12, 13]: (1) Hallmark, which summarizes and represents specific
well-defined biological states or processes displaying a coordinate
gene expression; (2) KEGG canonical pathways, derived from the Kyoto
Encyclopedia of Genes and Genomes [14]; and (3) Reactome canonical
pathways from the curated and peer-reviewed pathway database [15].
To test for the enrichment of these gene sets, the competitive gene
set test CAMERA [16] was used
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this study, as well as the technical differences present in
the datasets.
Three new sets of microarrays of quiescent versus

activated satellite cell are reported here (see Table 1). The
first one is part of a developmental and postnatal series
that was reported previously [16] (E12.5 vs. E17.5), and
here, P8 (postnatal day 8, in vivo proliferating) and 4–
5 week old (quiescent) mice were compared. The second
one is based on previously reported differences in quies-
cent and proliferating cell states in subpopulations of satel-
lite cells (quiescent: dormant, top 10% GFP+ cells vs.
primed, bottom 10% GFP+ cells isolated from Tg:Pax7-
nGFP mice; proliferating: 3 days postinjury [3]). The third
dataset is based on previous observations that the Notch
intracellular domain (NICD) when expressed constitu-
tively (Myf5Cre: R26stop-NICD) in prenatal muscle progeni-
tors leads to cell-autonomous expansion of the myogenic
progenitor population (Pax7+/Myod−) and the absence of
differentiation, followed by premature quiescence at late
fetal stages (E17.5) [16]. Here, E17.5 (quiescent) and E14.5
(proliferating) prenatal progenitors were compared. Ex-
cept for our datasets Quiescent(adult)/Activated(P8) and
Fetal_NICD[E17.5/E14.5], all the studies were conducted
on adult mice (male and female) with ages ranging from
8 weeks to 6 months.
While all datasets shared similar cell states (quiescent

(QSC) and activated (ASC) satellite cells), the experimen-
tal procedures varied between studies. Activation of cells,
for instance, was achieved in different ways: (i) in vitro, by
culturing freshly isolated satellite cells for several days and
(ii) in vivo, by extracting ASCs from an injured muscle.
Furthermore, for in vivo activation, several techniques
were used to induce the injuries—BaCl2, or the snake
venoms cardiotoxin or notexin. Cell extraction protocols
also varied among the different studies: (i) using trans-
genic mice expressing a reporter gene that marks satellite
cells (several alleles) or (ii) using a combination of anti-
bodies targeting surface cell antigens specific to satellite
cells (several combinations, see Table 1). Finally, the nine
datasets that were examined in this study date from 2007
to 2016. During this period, microarray technologies
evolved, and the different chips available may introduce
yet another source of variation among the compared
datasets. To carry out a statistically meaningful ana-
lysis of these extensively heterogeneous datasets, crit-
ical data processing was required to interpret gene
signatures as described in the workflow (Fig. 1).

The number of differentially expressed genes varies
significantly among different datasets
A total of 32 samples from ASCs and 34 samples from
QSCs from the nine datasets were analyzed. After the
quality control, one sample from the GSE38870 dataset

was considered to be an outlier and was not included in
the final analysis.
The number of significantly up- and down-regulated

genes (DEGs) resulting from the differential expression
analysis of the quiescent with respect to the activated
states were calculated (Additional file 5: Table S1). DEGs
were identified as having |logFC| ≥ 1 and a false discov-
ery rate FDR ≤ 0.05. The statistical analysis was per-
formed at the probeset level, and only those probesets
matching to genes are reported. On average, the datasets
exhibited 1548 up-regulated genes with a standard
deviation of 1173 genes. The number of down-regulated
genes corresponded to 2122, with a standard deviation
of 1658 genes. The lowest number of DEGs belonged to
the Fetal_NICD[E17.5/E14.5] dataset (39 up, 136 down),
while the highest number of DEGs belonged to the
GSE70376 dataset (4367 up, 6346 down). Additionally,
an analysis of the distribution of the logFC across the
datasets revealed that there were significant differences
among the ranges and shapes of such distributions for
each dataset (Additional file 2: Figure S2).

Gene set level analysis reveals common underlying
biological processes across the datasets
Despite the great difference among the number of DEGs
for the different sets, clear trends among the significantly
enriched pathways were found (Fig. 3a). This heatmap
shows each dataset as a column and each enriched gene set
as a row. The gene set collection that was tested for enrich-
ment corresponds to the Hallmark gene set collection from
MSigDB [40]. Enriched gene sets corresponding to over-
expressed genes are shown in red, while enriched gene sets
that were generally abundant in under-expressed genes are
shown in blue. Out of the 11 datasets, GSE38870 stood as
an outlier for both over- and under-represented gene sets
compared to the rest. For the other ten datasets, most of
them showed an enrichment in the quiescent state for the
TNFA_SIGNALING_VIA_NFKB pathway (nine datasets),
while eight datasets were enriched in UV_RESPONSE_DN,
IL6_JAK_STAT3_SIGNALING, APICAL_SURFACE, and
KRAS-SIGNALING_DN pathways. Similarly, the ten data-
sets shared similar trends for under-expressed genes in the
pathways MYC_TARGETS_V1, E2F_TARGETS, G2M_
CHECKPOINT, and OXYDATIVE_PHOSPORYLATION,
all of which are expected to be absent in the quiescent state.
In total, two subnetworks corresponding to 8 under- and
15 over-expressed enriched gene sets could be distin-
guished (Fig. 3b). A network representation of the top 3
most commonly found enriched gene sets (nodes, thick-
outlined circles) is shown in Fig. 3b for the over-expressed
(TNFA_SIGNALING_VIA_NFKB, UV_RESPONSE_DN, I
L6_JAK_STAT3_SIGNALING) and under-expressed (MY
C_TARGETS_V1, E2F_TARGETS, G2M_CHECKPOINT)
categories. The size of each node corresponds to the total
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number of times that the gene set was enriched in all the
datasets, and the thickness of the interconnecting lines is
proportional to the number of genes shared between
connected nodes. Gene sets sharing less than 10% of their
genes are not shown. We noted also that different gene sets
had a varying number of genes in common (Fig. 3b); if the
gene overlap were large, those gene sets (and their
corresponding biological functions) will likely be also
affected (i.e., activated or repressed). For the three most
common enriched gene sets with under-expressed
genes, for example, we noted that gene set MYC_TAR-
GETS_V1 shares most of its genes with gene sets
E2F_TARGETS and G2M_CHECKPOINT. This sug-
gests that the three categories represented by these
gene sets had an interplay of genes that displays them
all as under-expressed.

Determining a quiescent transcriptional signature among
all datasets
To determine a consensus quiescent signature from the
datasets, we compared the genes found to be

differentially expressed within each dataset, in order to
identify genes commonly up- or down-regulated in the
quiescent state. Although the aforementioned technical
and experimental heterogeneity could introduce noise in
this analysis, such variation was distinguishable from the
more stable, underlying common quiescent signature.
Given that the distribution and ranges of the logFCs
varied so drastically between datasets (Additional file 2:
Figure S2), a single FC (fold change) threshold could not
be chosen to be used for all datasets. Thus, for the
combinatorial analysis approach, we set out to maximize
the number of differentially expressed genes common to
all the datasets that were considered, where only the ad-
justed P value was used as a threshold to define DEGs.
However, even in this low constrained scenario, combin-
ing all the datasets together resulted in very few overlap-
ping genes: 12 up (Arntl, Atf3, Atp1a2, Cdh13, Dnajb1,
Enpp2, Ier2, Jun, Nfkbiz, Rgs4, Usp2, Zfp36) and 1 down
(Igfbp2). Alternatively, when certain datasets were
excluded from the analysis, the number of DEGs in-
creased (Fig. 4a).

a b

Fig. 3 Enriched gene sets across individual datasets. Enriched (over-represented) gene sets with over-expressed genes are shown in red; enriched gene
sets with under-expressed genes are shown in blue. a Gene set enrichment profiles using the Hallmark gene set collection from MSigDB [40], each row
corresponds to a gene set, and each column corresponds to a dataset. b Network representation of three most common over- and under-expressed gene
sets (denoted by the thick border on the node) along with the gene sets sharing genes with them (connector lines). Nodes represent gene sets with a
node circle size proportional to the number of times the gene sets appear as enriched in the different datasets (see panel a). Thickness of the connecting
lines is proportional to the number of shared genes between nodes

Pietrosemoli et al. Skeletal Muscle  (2017) 7:28 Page 8 of 15



Combinatorial assessment of datasets according to
significance and similarity criteria
To find the best combination of datasets defining a
consistent and sufficiently large quiescent signature, we
ranked them according to their significance. This signifi-
cance was determined according to an ensemble of cri-
teria. First, the dataset should have a minimum number
of DEGs. Our Fetal_NICD[E17.5/E14.5] dataset, for in-
stance, had only 250 DEGs (Additional file 5: Table S1),
and using it in the analysis resulted in a dramatically re-
duced number of overlapping DEGs (Additional file 3:
Figure S3). A second criterion was the presence of genes
known to be differentially expressed between quiescent
and activated states from previous studies. In this case,
datasets GSE38870 and GSE81096 did not meet this cri-
terion, since they lacked genes known to be associated
with or regulating the quiescent state such as Calcr,
Notch1, Chrdl2, Lama3, Pax7, and Bmp6 genes (unpub-
lished data, see Fig. 7; [41–43]). As a third criterion, we
used the dataset similarity, which was assessed using the
Jaccard index (JI), and a matrix of the JIs for the up- and
down-regulated genes was generated (Figs. 4b, c, re-
spectively). In both matrices, the closest pairs of datasets
were GSE47177 at 60 h and GSE47177 at 84 h (JI = 0.46
and 0.44 for the up- and down-regulated genes, respect-
ively), followed by the second pair of closest sets Quies-
cent [high]/D3Activated [high] and Quiescent [low]/
D3Activated [low] (JI = 0.39 and 0.33, for up- and down-
regulated genes, respectively). The observation that the

first two closest datasets belonged to studies originating
from the same laboratory underscores the impact of
technical biases. The hierarchical clustering of the
Euclidean distance of the Jaccard indexes shows that for
up- and down-regulated genes, the datasets Fetal_-
NICD[E17.5/E14.5], GSE38870, and GSE81096 had a
tendency to not group with the rest of the datasets. In
addition to these criteria, others can be used to assess
the significance of the datasets. Choosing the datasets
according to the activation or extraction method of the
cells, for example, would result in a more stringent
ensemble of datasets.
Taking into account the dataset significance (based on the

number of DEGs and presence of some reported quiescent
markers) and the low extent of overlap between Fetal_-
NICD[E17.5/E14.5], GSE38870, and GSE81096 datasets
with respect to the remaining datasets, these three datasets
were excluded from the multi-dataset analyses. The final
ensemble comprised the eight remaining datasets which
had 207 and 542 genes commonly up- and down-regulated,
respectively (Fig. 4a). To further characterize these
commonly regulated genes, we performed an over-
representation analysis (ORA) of the gene sets. An enrich-
ment was detected for the 207 commonly up-regulated
genes in seven different Hallmark gene sets (Fig. 5a). Some
genes were shared among different pathways (e.g., Atf3 and
Il6 were found in six different gene sets), while others were
found in one gene set only (e.g., Tgfbr3, Spsb1). These re-
sults are consistent with the individual gene set enrichment

a b

c

Fig. 4 Different combinatorial landscapes result in different degrees of stringency for the list of genes defining the quiescent state of satellite cells. a
Barplot indicating the number of overlapping differentially expressed genes (DEGs) for each best combination of intersections, from degree 2 to 11.
The dots underneath the barplot indicate the datasets included in the intersections. The total number of up (UP) and down (DOWN) DEGs for each
dataset are indicated in light gray and dark gray, respectively. Panels b and c are the colored matrices showing the Jaccard index between each pair of
datasets, for UP DEGs and DOWN DEGs, respectively. Dendrograms show the hierarchical clustering using the Jaccard index as Euclidean distance
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analysis (see Fig. 3) emphasizing that these genes reflect the
global traits associated with the quiescent state. Note that
only a fraction of the 207 genes was found in known exist-
ing gene sets (57/207), leaving about three-quarters of the
commonly up-regulated genes not associated with any
existing gene set. This finding was expected given that a
quiescent signature is yet to be defined, and thus current
gene sets lack such annotations. To facilitate the analysis of
transcriptomes as described here, we have developed an on-
line interactive tool called Sherpa (Fig. 6). Sherpa allows
users to perform analyses on individual and on multiple
datasets. Each individual dataset analysis involves the identi-
fication of differentially expressed genes; comparison of the
expression of selected genes in the quiescent and activated
states through tables, heatmaps, and volcano plots; and ex-
ploration of the distribution of the samples according to
their variability through principal component analysis and
cluster analysis. The multiple dataset analysis allows the
comparison of selected datasets according to the commonly
differentially expressed genes. All of these analyses are inter-
active, as they allow the user to select the thresholds of fold
change (logFC) and false discovery rate (adj. P value).

To assign a global function to the commonly regulated
genes, we annotated them using GOSlim terms, which
summarize broad terms based on Gene Ontology (GO)
terms [44]. To identify categories of genes, we generated
heatmaps of the logFC in the different datasets for a sub-
set of the 207 UP genes belonging to the extracellular
matrix, nucleic acid binding activity (+/− cell cycle prolif-
eration), and signal transduction activity (Fig. 5b).
Unexpectedly, some genes associated with cell cycle pro-
liferation, such as c-Fos and c-Jun, were up-regulated in
the quiescent cell analyses in all datasets (Fig. 7a). To ver-
ify the transcriptional relevance of these genes in
quiescent cells, we used a protocol to isolate satellite cells
in which a short fixation (PFA) treatment was performed
prior to harvesting the cells to arrest de novo transcription
during the isolation protocol (see the “Methods” section).
Then, the expression level quantification was assessed at
the transcript (RT-qPCR) and protein (Western blot) level
at different time points after isolation for a number of
genes (Fig. 7b, c). Notably, quantifications of c-Jun, Jun B,
and Jun D levels showed that at time 0 (+PFA), these
genes were not detected in quiescent cells, neither at the

ba

Fig. 5 Gene expression of differentially expressed genes (DEGs) in satellite cells. a Binary heatmap of the over-representation analysis. Each col-
umn represents one enriched (over-represented) gene set, and each row corresponds to a gene. Red cells indicate the presence of the corre-
sponding gene in a given gene set. b Network representation of 39 GOSlim terms used to characterize the commonly regulated genes
in satellite cells. Nodes represent gene sets with a node size proportional to the gene set size. Edges indicate that genes are shared among the
gene sets. The thickness of the edge is proportional to the number of shared genes. Also shown are the heatmaps of logFC for genes belonging
to extracellular matrix, nucleic acid binding and cell cycle and proliferation, nucleic acid binding, and signal transduction activity, respectively. Each
row corresponds to a gene and each column corresponds to a dataset. Dendrograms show hierarchical clustering using the Euclidean distance
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mRNA (right panel) nor at the protein (left panel) level
(Fig. 7c). However, these genes were up-regulated using
conventional satellite cell isolation protocols that take sev-
eral hours. As a control, PFA treatment after cell isolation
had no effect on this expression pattern (Additional file 4:
Figure S4). This rapid up-regulation was then followed by
a decline in expression levels of these genes (Fig. 7b, c),
suggesting that this is the result of a stress response that is
associated with the isolation procedure.

Discussion
The transcriptome analysis and pipeline, as well as the
Sherpa interface that we describe here, allow multi-scale

comparisons across divergent datasets that are heteroge-
neous in the platform and biological condition. Notably,
this pipeline allowed the examination of 11 datasets,
including three novel transcriptomes from our work, as
well as the identification of a variety of functional gene
sets that appear in common with the majority of the
datasets. To perform this analysis, it was necessary to
standardize every step of the analysis to attenuate the
impact of heterogeneity inherent in all of the datasets
due to experimental, biological, and technical variations.
These varying conditions led us to perform a combina-
torial assessment of the individual datasets according to
their significance and similarity criteria.

Fig. 6 Snapshot of the interactive web application for transcriptomic data exploration and comparison. Sherpa (http://sherpa.pasteur.fr) allows
users to perform individual dataset and multiple dataset analysis. In the individual dataset analysis (shown), the user chooses the dataset for
which the analysis is to be performed. Then, it is possible to identify differentially expressed genes (e.g., volcano plot), compare the expression of
selected genes in the quiescent and activated state (e.g., heatmap, as shown in the figure), and the distribution of the samples according to their
variability (principal component analysis). All these analyses are interactive, as they allow the user to set the thresholds of fold change (logFC) and
false discovery rate (adj. P value)
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a

Fig. 7 Direct comparison of fixed and unfixed satellite cells identify immediate response genes not present the in vivo state. a Boxplots of four
examples of genes found commonly upregulated in QSCs in the different datasets showing the distribution of intensities values in QSCs and
ASCs. Colored dots indicate each dataset. Shape of the dot indicates whether the gene is significantly differentially expressed or not. b Fold
change of mRNA (log10) between 0 h + PFA and 5 h + PFA. Blue bars indicate a higher expression in 0 h + PFA condition; the red bars indicate
a higher expression in 5 h + PFA condition. Color intensities are proportional to the fold change. c c-Jun, Jun B, and Jun D protein levels
from satellite cells at 0, 5, 10, 15 h after isolation (with and without PFA treatment) were measured by Western blotting, and band intensities
were quantified by densitometric analysis with the ImageLab software (right). Basal levels of c-Jun, Jun B, and Jun D mRNA from satellite cells at
0, 5, 10, 15 h after isolation (with and without PFA treatment) were measured by real-time PCR (left)
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Variations in datasets are not unique to the study of
muscle stem cells. Indeed, the last decades have
witnessed many efforts to analyze microarray data to
provide relevant gene signatures. In cancer biology, for
example, gene markers were sought either for prognosis,
i.e., lists of genes able to predict clinical outcome [45] or
for molecular subtyping, i.e., list of genes able to classify
different subtypes of a disease [46, 47]. However, even if
markers performed well, gene signatures derived from
studies on the same treatments and diseases often
resulted in gene lists with little overlap [48]. In other
cases, the signatures proved to be unstable, having other
gene lists on the same dataset with the same predictive
power [49]. These observations suggest that such sig-
natures may include causally related genes, i.e., down-
stream of the phenotype-causing genes, and that
these gene lists may share the same biological path-
ways [50].
Gene Set Enrichment Analysis (GSEA) has become an

efficient complementary approach for analyzing omic
data in general and GEPs in particular [50–52]. It shifts
the expression analysis from a gene space to a gene set
space, where genes are organized into gene sets
according to a common feature, such as a functional
annotation (e.g., a Gene Ontology term) or a specific
metabolic pathway (e.g., a KEGG pathway). In this way,
it incorporates previously existing biological knowledge
to drive and increase interpretation, while offering
greater robustness and sensitivity than gene level strat-
egies [50, 53, 54].
In spite of the heterogeneity in datasets examining qui-

escent muscle satellite cells, we were able to identify genes
that were consistently up- and down-regulated among the
different datasets (Additional file 5: Table S1). The final
multi-set analysis comprised eight datasets which had 207
and 542 genes that were commonly up- and down-
regulated, respectively. Moreover, the gene set enrichment
analysis of the individual datasets showed striking similar-
ities on the over- and under-represented gene sets. These
gene sets, which summarize and represent well-defined
biological states and processes in the cells, were shared
among the different datasets. They include an over-
representation of genes in the TNFα pathway via NFKβ
signaling, Il6-Jak-Stat3 signaling, and the apical surface
processes, and an under-representation of MYC and E2F
targets, and genes associated with the G2 M checkpoint
and oxidative phosphorylation. Some markers such as
Calcitonin receptor (Calcr),Teneurin4 (Tenm4), and stress
pathways identified previously were also present in our
analysis [11, 41, 55] (Additional file 6: Table S2). However,
we also report that virtually all datasets contained genes
that would be expected to be present during activation or
cell cycle entry, such as members of the Fos and Jun family
previously identified as immediate early stress response

genes [56]. Using a novel isolation protocol based on the
notion that tissues that are fixed prior to processing result
in stabilized mRNA [18, 19], we validated the expression
of several genes including Calcr and Teneurin4 (Tenm4)
as true quiescent markers. In contrast, we show that Fos
and Jun transcripts and Jun family proteins are not present
at significant levels in vivo, but are robustly induced
within 5 h, the average processing time taken for isolation
by FACS of satellite cells. These results are concordant
with a recently published paper in which immediate early
and heat-shock genes were rapidly up-regulated during
the cell isolation procedure [57]. We propose that these
and other stress response genes mitigate the quiescent to
activation transition that accompanies the initial steps of
exit from G0.
Given these unexpected findings, the comparison of

transcriptomes of satellite cells from a fixed/in vivo state
with those that were described here would be important
to delineate homeostatic vs. immediate early response
genes. For that purpose, Sherpa allows the integration of
datasets from fixed samples, or other methodologies,
when they will be available. Beyond the present findings,
we propose that all transcriptome data obtained from
cells isolated from solid tissues, which require extensive
enzymatic digestion and processing before isolation of
RNA, need to be re-evaluated to distinguish those genes
that are induced by the isolation procedure.
In addition to generating this open access compen-

dium of GEPs, we provide a standardized pipeline that
sets the basis for a multi-set analysis for an effective and
systematic comparison of individual datasets. Analyzing
multiple datasets provides generalized information
across different studies [38, 39]. The cancer field was a
pioneer in combining several works [58, 59] and other
fields, such as neurodegenerative diseases [60, 61] and
regulatory genomics have successfully adopted this strat-
egy [62]. The multi-dimensional approach presented
here offers increased power, due to the higher sample
size and increased robustness, by highlighting variations
in individual studies results [37, 63]. Such variations
are the consequence of the high level of noise and ar-
tefacts and are typically associated with microarray
data [64].

Conclusions
Here, we compile the first comprehensive catalog of gene
expression data of myogenic cells across distinct states
and conditions, providing a global perspective on quies-
cence. An extensive comparison of the transcriptomic
profiles of mouse skeletal muscle satellite cells in quies-
cent and activated states resulting from nine datasets re-
vealed common features among the different studies from
other features which are more specific to the individual
datasets. In spite of heterogeneities across platforms, we
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were able to identify genes that were consistently up- and
down-regulated among the different datasets. By doing so,
we developed and made available an open-access inter-
active exploratory tool called Sherpa (SHiny ExploRation
tool for transcriPtomic Analysis) that allows statistically
valid analyses and systematic comparisons that cannot be
performed directly on the datasets. Finally, by obtaining
mRNA directly from fixed muscle tissue for empirical test-
ing of genes present during quiescence in vivo, we identi-
fied immediately early expressed stress response genes
that were present in all datasets due to the isolation and
processing protocols used previously for solid tissues.
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Additional file 1: Figure S1. Quality controls and data sample
distribution for Quiescent [high/low]/D3Activated [high/low] dataset. a
Relative log expression (RLE) and b normalized unscaled standard errors
(NUSE) plots for the D3P7 dataset show that as expected for good quality
data, RLE median values are centered around 0.0, while the median
standard error should be 1 for most genes in the NUSE plots. A sample
distribution is distributed according to status (D3H: activated, high; D3L:
activated, low; QH: quiescent, high; QL: quiescent, low) using principal
component analysis (c) and hierarchical clustering of the Euclidean
distance (d). (PDF 103 kb)

Additional file 2: Figure S2. Violin plots of the logFC distribution for
each individual dataset. Density plots of the logFC (|logFC| < 1 in red;
|logFC| > 1 in blue. (PDF 156 kb)

Additional file 3: Figure S3. Effect of adding NICD[E17.5/E14.5] dataset
on the best combinations of datasets. Impact of including or excluding
NICD dataset on overall analysis. (PDF 395 kb)

Additional file 4: Figure S4. Effect of PFA treatment at different time
points in the experimental procedure. Control experiments showing no
effect of PFA on gene expression measurements. (PDF 445 kb)

Additional file 5: Table S1. Identified differentially expressed genes in
the QSCs condition for the nine datasets. Differentially expressed genes
in the QSCs condition for the nine datasets using logFC = 1 and FDR =
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Additional file 6: Table S2. Primers used for validation of gene expression
by RT-qPCR. Primers used for RT-qPCR studies in Fig. 7. (PDF 14 kb)
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