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In memoriam: Susan Abmayr (1956–2019) –
“What do we do? Whatever it takes!”

Erika R. Geisbrecht1* and Mary K. Baylies2
We are saddened to announce that Susan Abmayr,
noted pioneer in Drosophila myogenesis, passed away
suddenly on Thursday, July 18, 2019. Susan was born on
March 13, 1956 in Pittsburgh, PA. She obtained her
bachelor’s degree in Biological Sciences and Economics
from Carnegie Mellon University in 1978 and completed
her graduate training in 1987 under the mentorship of
Robert G. Roeder, Ph.D. at Rockefeller University study-
ing basic mechanisms of transcription. During her time
in the Roeder lab, Susan met her husband and longtime
collaborator, Jerry Workman, Ph.D. She performed her
postdoctoral work with Tom Maniatis, Ph.D. in the
Department of Biochemistry and Molecular Biology at
Harvard University. Susan started her independent
research career in the Department of Biochemistry and
Molecular Biology at Penn State University and was pro-
moted to Associate Professor in 1998. In 2003, Susan
moved to the Stowers Institute for Medical Research in
Kansas City as an Associate Investigator. She received a
secondary appointment at the University of Kansas
School of Medicine in 2004.
Susan’s contributions to the fields of transcription and

myogenesis resulted in over 70 publications. Her
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scientific career and introduction to Drosophila as a
model organism began in Sarah C. R. Elgin’s laboratory
at Harvard University where she worked as a technician
before starting graduate school. It was in the Elgin lab
where Susan became familiar with chromatin organization
and gene expression and forged life-long connections with
fellow Elgin lab members [1–3]. Once in graduate school,
she continued to pursue research questions related to
transcription in the Roeder lab, with an emphasis on
understanding transcriptional initiation by TFIID binding
to promoter sequences [4–7].
Supported by a Damon Runyon-Walter Winchell

Cancer Research Fund Post-Doctoral fellowship in the
Maniatis lab, Susan was at the forefront in establishing
Drosophila as a myogenic model. Only very few labs,
among them Michael Bate’s lab in Cambridge UK, were
using Drosophila to study muscle development at that
time [8]. Susan sought to bring her expertise in transcrip-
tion to the fly. In 1989, Harold Weintraub’s group re-
ported the isolation of mouse MyoD, a master regulatory
gene for myogenic determination [9]. When injected into
non-muscle cell types, such as melanoma, neuroblastoma,
liver, and adipocytes, MyoD transformed them into
muscle. Capitalizing on the relative simplicity and ease of
fly genetics, Susan merged her background in transcription
with fly biology to uncover a Drosophila homolog of MyoD.
In collaboration with her colleague Alan Michelson, they
used the helix-loop-helix (HLH) regions of mouse MyoD
and rat Myogenin as hybridization probes to screen a
Drosophila genomic library. The identification of this fly
MyoD protein, dubbed ‘Nautilus’ after the weight machine
at the gym [10], broke open the embryonic myogenesis field
in Drosophila and subsequently paved the way for the dis-
covery of vertebrate Myocyte-specific Enhancer Factor 2, or
Mef2 by Susan and other labs [11–16]. The absence of
Mef2 results in a lack of muscle tissue. Without differenti-
ation of naïve embryonic cells into myoblasts in these mu-
tant embryos, the development of muscles fails.
At a time when the central focus of Drosophila studies

was either on patterning the embryonic epidermis or on
the establishment of the nervous system [17, 18], the
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advantages of using this stage of development to under-
stand myogenesis became readily apparent. Muscle cell
fate specification, myoblast fusion, myotube guidance, and
attachment all occur in the relatively short time frame of
~ 10 h [19–23]. Moreover, the genetic tools and numerous
reagents to follow individual proteins both in fixed and
live tissue have allowed for a detailed dissection of myo-
genic events that are not possible in cell culture or mam-
malian models. One great example of exploiting this
model system has been the use of genetic screens to iden-
tify molecules essential for myoblast fusion, which has
been much of the focus of Susan’s research career.
The myogenesis field was mammalian focused in the

late 1980s and early 1990s. Drosophila as an experimental
system to study myogenesis was considered somewhat on
the fringe at this time, yet this gave Susan a unique niche
when she started her independent laboratory at Penn State
University. Susan’s early years could best be classified as
the years of discovery. While trying to make mutations in
nautilus, Susan’s lab identified two genes required for the
fusion of myoblasts to generate multinucleated myofibers.
The first was sticks and stones (sns) which encodes for a
transmembrane protein that is part of the immunoglobu-
lin (Ig) superfamily [24]. Sns is present on the surface of
the fusion competent myoblasts (FCMs) [24, 25]. There it
interacts at the sites of fusion with the Ig domain family
member Dumbfounded (Duf) which is present on founder
cells (FCs), or seed myoblasts, that give rise to an eventual
syncytial muscle cell [25, 26]. Embryos that lack Sns have
an abundance of unfused myoblasts that fail to form the
stereotypical, multinucleated myofibers present in wild-
type embryos [24, 27, 28]. The second gene uncovered
was myoblast city (mbc) [29]. The Mbc protein is a cyto-
plasmic protein that functions with the GTPase Rac to
regulate the actin cytoskeleton. A quote from Susan in a
1994 Penn State publication [30] noted the novelty of her
approach, “Not many people have looked at developing
muscle in a fly embryo. We’re some of the first people in
the country to start identifying these kinds of genetic
defects.”
Susan’s foresight to use the fly system to identify con-

served factors required for myogenesis quickly drew others
to the field which resulted in the initiation of multiple gen-
etic screens in other labs to uncover novel fusion mutants
[31–34]. It was around this time in 2003 when Susan and
Jerry moved their labs to the Stowers Institute. A major
focus of the lab continued to be the identification of new
players required in muscle development using the state-of-
the-art technologies that Susan was so willing to incorpor-
ate. Expansion into proteomic approaches identified Elmo/
Ced-12 as an obligate binding partner of Mbc to modulate
actin cytoskeletal activity at the site of fusion [35]. More im-
portantly, the discovery of these early genes transitioned
the field into characterizing the cellular events that govern
the myoblast fusion process. This transition also brought
with it Susan’s development of timelapse imaging ap-
proaches that were being pioneered in the field [36].
Current models derived from the work in Susan’s lab and
others show that FCMs must migrate and adhere to exist-
ing FCs. Cell adhesion mediated by Sns in the FCM and
Duf in the FC relay signaling information through the
MBC-ELMO-Rac pathway to mediate actin dynamics.
Actin foci formation is dependent on the Formin, Diaphan-
ous and, most notably, the Arp2/3 complex, which nucle-
ates and drives actin-based polymerization [37–42]. The
transient F-actin foci that is formed and resolved at the site
of each membrane fusion event is accompanied by protru-
sions that induce membrane destabilization, pore forma-
tion, and ultimately fusion of the opposing lipid bilayers
[43, 44]. Notably, many of the genes discovered in the
Drosophila system by Susan and other fly labs have
been later proven to be required for the fusion of
vertebrate muscles [45].
Beyond her research achievements, Susan was well

respected for her contributions in the Drosophila and
myogenesis communities. She acted as the Heartland
representative on the Drosophila Board, served as a
grant reviewer for the National Institutes of Health
(NIH) and the National Science Foundation (NSF),
and helped organize a Frontiers in Myogenesis meet-
ing in 2006. Susan defined what it meant to be an
educator at many levels. At the forefront of her pri-
orities was the training of graduate students. She was
a passionate lecturer and a firm believer in the power
and rigor of genetic approaches. After moving the
lab from Penn State to the Stowers Institute, she was
actively involved in graduate student recruiting and
admissions through the University of Kansas Medical
School (KUMC) graduate program for over 14 years.
Susan’s mentoring also extended beyond her students: for
example, she was an invaluable colleague on study panels,
offering advice and counselling to new panel members on
how to navigate the proper grant review.
Susan’s first love of transcription never wavered as she

maintained a long-standing collaboration in the chroma-
tin field with her husband, Jerry Workman. Her expert-
ise in Drosophila genetics added an innovative angle to
Jerry’s work that culminated in over 35 co-authored pa-
pers, primarily understanding the tissue-specific roles of
Spt-Ada-Gcn5-acetyltransferase (SAGA) complexes dur-
ing development. Outside of the lab, Susan and Jerry
enjoyed extensive traveling and visiting with family. She
also loved gardening, audiobooks, and Billy Holliday
music. A late passion was volunteering through Uplift, a
Kansas City based organization devoted to serving the
homeless.
Every mentor, even subconsciously, instills scientific

traits in their trainees that become ingrained and get
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passed onto future generations of researchers. Two
words that embodied Susan’s approach to science were
‘rigor’ and ‘persistence.’ Expectations required accuracy
and precision. Repetition assured both. It was rare for a
project to be put on the sidelines. Every piece of infor-
mation would eventually make sense with more experi-
mentation. She would frequently wait in the lab until
late in the evening to see the latest scientific result and
never wavered in her commitment to student success,
whether that be assisting with additional studying to
pass a Ph.D. qualifying exam or making numerous revi-
sions on a Ph.D. thesis. She will be missed by friends,
colleagues, and the numerous trainees she mentored.
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