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N-terminal titin fragment: a non-invasive, 
pharmacodynamic biomarker 
for microdystrophin efficacy
Jessica F. Boehler1*, Kristy J. Brown2, Valeria Ricotti3 and Carl A. Morris4 

Abstract 

Background Multiple clinical trials to assess the efficacy of AAV-directed gene transfer in participants with Duchenne 
muscular dystrophy (DMD) are ongoing. The success of these trials currently relies on standard functional outcome 
measures that may exhibit variability within and between participants, rendering their use as sole measures of drug 
efficacy challenging. Given this, supportive objective biomarkers may be useful in enhancing observed clinical results. 
Creatine kinase (CK) is traditionally used as a diagnostic biomarker of DMD, but its potential as a robust pharmacody-
namic (PD) biomarker is difficult due to the wide variability seen within the same participant over time. Thus, there 
is a need for the discovery and validation of novel PD biomarkers to further support and bolster traditional outcome 
measures of efficacy in DMD.

Method Potential PD biomarkers in DMD participant urine were examined using a proteomic approach on the Som-
alogic platform. Findings were confirmed in both mdx mice and Golden Retriever muscular dystrophy (GRMD) dog 
plasma samples.

Results Changes in the N-terminal fragment of titin, a well-known, previously characterized biomarker of DMD, were 
correlated with the expression of microdystrophin protein in mice, dogs, and humans. Further, titin levels were sensi-
tive to lower levels of expressed microdystrophin when compared to CK.

Conclusion The measurement of objective PD biomarkers such as titin may provide additional confidence 
in the assessment of the mechanism of action and efficacy in gene therapy clinical trials of DMD.

Trial registration ClinicalTrials.gov NCT03368742.

Introduction
Duchenne muscular dystrophy (DMD) is a devastat-
ing, severe myopathy that results in muscle wasting over 
time, leading to loss of ambulation and premature death. 
The cause of the disease is a loss of function mutation in 
the DMD gene, which encodes for the protein dystrophin 
that is essential for muscle health [1–3]. Dystrophin acts 
both as a membrane stabilizer to support proper mus-
cle contractions [4–8] and as a signaling molecule that 
assists in various functions throughout the myofiber 
[9–21]. In its absence, the muscle membrane is damaged, 
signaling pathways are disrupted and muscle force is 
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reduced. Over time, the skeletal muscle is replaced with 
fat and fibrotic tissue [22], underpinning the progressive 
nature of the disease.

A hallmark of muscle damage is elevated circulating 
proteins, usually of muscle origin, that have either been 
actively released or passively leaked from the muscle 
[23–39]. This suggests that under conditions of muscle 
damage, there are physical ruptures and/or altered sign-
aling pathways in myofibers, resulting in a myopathic sig-
nature that can be observed in biofluids such as serum, 
plasma, or urine. A well-characterized marker of muscle 
damage is serum creatine kinase (CK), which is a widely 
used diagnostic marker for DMD, as well as other mus-
cle diseases [40]. However, while elevated CK is a reliable 
biomarker of early-stage disease, it has been shown to 
decrease over time as a result of the progressive muscle 
loss associated with disease progression in DMD. Hence, 
the utility of CK and other muscle-specific proteins that 
are not typically found in circulation is more robust dur-
ing earlier stages of the disease [23].

To prevent the accrual of additional muscle damage and 
subsequent muscle loss, several gene therapies, including 
Elevidys™ (delandistrogene moxeparvovec-rokl) suspen-
sion, which received FDA accelerated approval approved 
for use in 4–5-year-olds [41], have been designed to 
restore expression of a functional, albeit shortened, form 
of the dystrophin protein. Adeno-associated virus (AAV)-
mediated gene transfer involves systemic administration 
of an AAV vector containing a transgene that expresses 
a mini- or micro-dystrophin that is delivered to muscles 
throughout the body. Ongoing clinical trials using differ-
ent AAV capsids and microdystrophin construct designs 
have reported protein expression in muscle biopsies at an 
average of ~ 20–50% of normal dystrophin levels [42–44]. 
These differing AAV microdystrophin gene therapies 
have demonstrated functional efficacy in the mdx mouse 
model of DMD and in the Golden Retriever muscular 
dystrophy (GRMD) dog model [45–49]. However, the 
functional impact of these rationally designed proteins 
is currently being investigated as microdystrophins do 
not exist in nature. Further, the relationship between the 
functionality of a given quantity of microdystrophin as 
compared to normal, full-length dystrophin is currently 
unknown.

Functional outcome measures such as the North Star 
Ambulatory Assessment (NSAA), the 6-min walk test 
(6MWT), and the 4-stair climb are standard efficacy 
assessments incorporated into DMD clinical trial designs 
with the objective of determining if treatments result in 
clinically meaningful changes for participants. However, 
these standard outcome measures exhibit variability both 
within and between participants [50, 51]. Supportive, 
noninvasive pharmacodynamic (PD) biomarkers such as 

serum CK are potentially useful adjuncts to contextualize 
functional outcome measures, as they represent objective 
measurements that are downstream of microdystrophin’s 
direct mechanism of action of stabilizing the muscle 
membrane. Further, biomarkers within circulation pro-
vide a snapshot of muscle health throughout the body. 
However, CK is known to have wide intra- and inter-sub-
ject variability [52, 53], is thought to passively leak from 
the muscle, and decreases with age in DMD [53], limiting 
its usefulness as a PD biomarker of therapeutic efficacy, 
especially in older participants.

Previous studies have shown differences in several cir-
culating proteins across multiple biofluids using various 
proteomic methods that seem to be driven by the lack 
of dystrophin in skeletal and cardiac muscles [23, 24, 26, 
27, 33, 36, 54, 55]. Some of the more highly characterized 
markers have included titin [23, 34–37, 56], troponin [35, 
38, 57–61], MMP9/TIMP1 [26, 31, 32, 62, 63], myomiRs 
[28–30, 64–66], MDH2 [23, 55], CA3 [24–27, 67–70], 
and MYOM3 [23, 24]. Out of these markers, urinary 
titin has recently been shown to act as a PD biomarker 
in mdx mice treated with exon-skipping drugs [34]. To 
explore the potential of these and additional noninvasive 
PD markers in DMD, proteomic screens were carried out 
using Somalogic’s SOMAscan platform. The screens were 
performed to measure circulating (serum/plasma) and/
or cleared (urine) proteins in biofluids from AAV9-CK8-
microdystrophin-treated mdx mice, GRMD dogs, and 
DMD participants. Titin, a marker previously associated 
with muscle damage in DMD [23, 36], was found to bet-
ter correlate with changes in expressed microdystrophin 
protein and was more sensitive to changes in drug effi-
cacy when compared to serum CK. Thus, titin may be a 
useful biomarker adjunct to microdystrophin expression 
measures in gene therapy clinical trials for DMD.

Results
SOMAscan identifies the N‑terminal fragment of titin 
in DMD participant urine
Urine is an attractive biofluid as it is less invasive than 
serum/plasma collection and reduces the burden for 
clinical trial participation. As such, characterization 
of the urinary proteome in DMD participants, which 
has been previously described using mass spectrom-
etry and antibody-based assays, was performed [36, 54]. 
The SOMAscan platform from Somalogic employs a 
non-biased method using its proprietary SOMAmer® 
aptamers to detect the presence of a large array of pro-
teins (~ 7000) in a given sample [71–73]. Urine obtained 
from DMD participants and healthy age-matched con-
trols from a previously characterized cohort [74] were 
used to quantify proteins found in the urine that may be 
altered by the expression of dystrophin—and potentially 
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microdystrophin—in the muscle. The top ten upregulated 
and downregulated proteins (Table 1) were identified and 
significance was assessed using a 2-way ANOVA.

Titin and ferritin proteins were found to be significantly 
upregulated (Fig.  1A), while benign prostate-specific 
antigen was significantly downregulated in DMD urine 
(Fig. 1B). Interestingly, increases in titin and ferritin have 
been previously described in DMD urine [36, 54], with 
titin being extensively characterized in the context of 
DMD disease biology [23, 34–37]. Due to the knowledge 
base already established for circulating and/or cleared 
titin’s role in DMD, titin was pursued as a potential PD 
biomarker in response to microdystrophin expression.

To gain additional confidence in the observed differ-
ences in titin quantities between DMD participants and 
healthy controls, Somalogic’s menu was searched and 
one SOMAmer aptamer that ostensibly detects the titin 
protein (SomaID SL006679) was identified. Somalogic 
has disclosed that this SOMAmer detects the N-ter-
minal fragment of titin (amino acids 1–194) (Fig.  2A), 
which was expected since previous studies have identi-
fied this same fragment in DMD urine [36]. To confirm 
the SOMAmer result, a Western blot was performed 
using an antibody that detects the N-terminal fragment 
of titin. The titin protein fragment was only present in 
DMD urine (Fig. 2B), thereby replicating previously pub-
lished data as well as confirming the SOMAmer results 
[36]. To quantify titin levels, a commercial ELISA devel-
oped against the N-terminal fragment was used to find a 
267-fold increase in DMD participant urine compared to 
healthy age-matched controls (Fig. 2C).

Even though urine collections are easy and not limited 
by low volume amounts, it is a difficult biofluid to nor-
malize when comparing across samples since many fac-
tors such as hydration and total volume collected can 
drastically impact results. To test different normalization 
factors, we used total creatinine (Fig. 2D), specific gravity 
(Fig. 2E), and cystatin C (Fig. 2F), all of which have been 
previously used in the context of DMD [34, 35, 37, 75] 
(Supplementary Fig.  1). Regardless of the normalization 
method, there was a strong association between elevated 
titin protein levels and DMD disease state.

Urinary titin: a potential pharmacodynamic biomarker 
in DMD participants expressing microdystrophin
To test the applicability of titin as a potential pharma-
codynamic biomarker in humans, urine samples were 
assessed using the SOMAscan assay at baseline, day 180, 
and day 360 from DMD participants treated with AAV9-
CK8-μDys5 who participated in the IGNITE DMD clini-
cal trial (NCT03368742). When samples were grouped 
by dose, we observed no statistically significant differ-
ence in urinary titin quantities; however, there was a wide 

range of microdystrophin expression in the muscle biop-
sies across participants.

Participants were segmented into one of two groups 
based on the percentage of microdystrophin-positive 
fibers from the vastus lateralis: Group 1 participants 
had < 10% microdystrophin-positive fibers and Group 2 
had > 10% microdystrophin-positive fibers (Table 2).

This grouping was justified based on previous litera-
ture showing that Becker muscular dystrophy, a milder 
and slower-progressing form of muscular dystrophy 
compared to DMD, is associated with > 10% of muscle 
fibers expressing a truncated form of dystrophin [76]. 
When comparing the groups, there were no differences 
with respect to age, baseline urinary titin, and serum CK 
activity levels. At day 90 post-dose, Group 1 participants 
had an average of 2% microdystrophin-positive muscle 
fibers, while Group 2 participants had an average of 47% 
microdystrophin-positive fibers.

Urinary titin levels were quantified at baseline, day 
180 and day 360 post-AAV9-CK8-μDys5 administration. 
Substantial, time-dependent decreases in urinary titin 
levels were observed in Group 2 participants, with both 
day 180 and 360 values reaching statistical significance 
compared to baseline levels, while the levels in Group 
1 participants remained unchanged (Fig.  3). Similarly, 
serum CK activity showed a downward trend at day 180, 
but exhibited greater variability and did not reach a sta-
tistical significance until day 360 post-dose (Fig. 3).

Circulating titin is highly conserved across multiple species 
and biofluids
Since the SOMAmer aptamer detects the N-terminal 
titin fragment, amino acid sequences across multiple 
species were compared to test if the Somalogic plat-
form would be beneficial for testing preclinical sam-
ples. Uniprot sequence alignment of mouse, dog, and 
human to the aptamer found high sequence homology 
(95%) to humans when compared to both mouse and 
dog (Fig.  4A). Blood samples, not urine, were available 
from preclinical studies in mdx mouse and GRMD dog 
models; however, it was hypothesized that the N-termi-
nal fragment may be present in blood as well due to the 
biomarker’s mechanism of action. As shown in Fig.  4, 
the SOMAmer was indeed able to detect the N-terminal 
fragment in plasma for both mouse and dog.

To model the clinical data and enhance confidence in 
our findings, the SOMAscan panel plasma from GRMD 
dogs that were treated intravenously with 1.0E13, 1.0E14, 
or 2.0E14 vg/kg AAV9-CK8-μDys5 was tested. The 
characterization of this cohort of GRMD dogs has been 
extensively described [46]. Plasma was assayed at 90 days 
post-treatment to replicate biopsy timepoints in which 
multiple clinical trials have reported microdystrophin 
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expression data. The results showed a decrease in cir-
culating titin in the range of 50–80% fibers positive for 
microdystrophin expression (≥ 1.0E14 vg/kg) in the vas-
tus lateralis, while no changes in circulating CK-MM 
protein was observed at any dose or microdystrophin 
expression level (Fig.  4B). A similar trend was observed 
in mdx mice with decreases in circulating titin observed 
at significantly lower levels of microdystrophin (quanti-
fied by mass spectrometry in quadriceps) compared to 
CK-MM protein (Fig. 4C).

Discussion
The standard functional outcome measures employed 
in clinical trials of DMD participants could benefit from 
the incorporation of additional supportive and objec-
tive endpoints for the assessment of therapeutic efficacy. 
Heterogeneity of disease phenotype, small participant 
numbers, and lack of sensitivity, as well as potential for 
subjective bias leave significant room for improvement 
in the clinical deployment and contextualization of these 
standard measures in a trial setting [77]. Measures must 

Fig. 1 DMD urine proteome characterization using the Somalogic platform. SOMAscan assay identified (a) upregulated and (b) downregulated 
proteins in DMD urine when compared to healthy age-matched controls

Fig. 2 The SOMAmer detects the previously characterized N-terminal fragment of titin in DMD patient urine. A SOMAmer detects the N-terminal 
fragment (amino acids 1–194) of titin. B Western blot using anti-TTN mouse monoclonal antibody [clone: 7D3] against amino acids 1–110 shows 
the presence of the fragment in DMD (lanes 7–14) urine, as well its absence in age-matched healthy controls (lanes 1–6). C Human urine ELISA 
confirms increases in the titin fragment seen in the SOMAscan panel and Western blot. D Normalization of the ELISA results using creatinine, E 
specific gravity, and F cystatin C show significant increases in the urinary titin fragment in DMD urine. For individual plots of normalization values, 
see Supplementary Fig. 1
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Fig. 3 CK8-μDys5 reduces urinary titin in the presence of 40–50% microdystrophin-positive fibers. A Group 1 (microdystrophin < 10% positive fibers 
in the vastus lateralis) shows no changes in urinary titin or serum CK activity 360 days post-treatment. B Group 2 (microdystrophin > 10% positive 
fibers in the vastus lateralis) shows decreases in urinary titin at day 180 and 360, while serum CK activity was trending at day 180, but significantly 
changed at day 360 only

Fig. 4 Circulating titin shows changes at lower levels of expressed microdystrophin when compared to CK-MM in preclinical DMD models. A The 
Somalogic aptamer detects the N terminal portion (AA 1–194) of the titin protein. This region was predicted to be highly conserved across mice, 
dogs, and humans. B Titin showed a response in vastus lateralis at > 50% microdystrophin levels, while an increase or no change was observed 
in CK-MM in the GRMD dogs 90 days post-treatment. C Circulating titin was also decreased in the plasma of mdx mice at lower levels of expressed 
microdystrophin in quadriceps when compared to CK-MM
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be compared to natural history to rule out changes due 
to disease; however, real-world evidence using charac-
terized cohorts has limitations [78]. Placebo arms may 
impart more rigor to these assessments, but there are 
also significant ethical considerations around the use of 
placebo controls for participants with a rare, progres-
sive, and universally fatal disease. Traditionally, func-
tional measurements such as the NSAA, 6MWT, and 
4-stair climb are used as definitive readouts to assess 
drug efficacy, but the sensitivity needed to detect poten-
tial changes in drug effects in a reasonable period of time 
is very high, especially when changes owing to disease 
progression occur over many years. Additionally, motiva-
tion is known to affect some outcome measures [79], so 
motivational bias cannot be ruled out when changes in 
the functional measurements are observed.

One way to bolster and substantiate current tools is 
the incorporation of objective biomarkers into clinical 
trial designs. Objective biomarkers are easier to identify 
in genetic diseases with a known defect. In DMD, micro-
dystrophin expression is presumed to be a surrogate bio-
marker of clinical benefit based on extensive preclinical 
data in combination with known mechanisms of action 
and outcomes in participants with mutations that result 
in shortened dystrophin proteins [45, 46, 80]. Many have 
attempted to utilize serum CK as a biomarker to detect 
drug-induced effects in the context of clinical trials of 
DMD, but only trends have been observed thus far [81]. 
In addition, as this biomarker is known to decrease with 
increasing muscle loss during disease progression, it 
is not ideal for assessing drug efficacy over time, espe-
cially in older participants. To look for better candidate 
pharmacodynamic markers, urine samples from DMD 
participants who received AAV9-CK8-μDys5 were evalu-
ated and changes in the N-terminal titin fragment were 
observed. By grouping participants according to micro-
dystrophin expression levels, the effect of AAV trans-
duction was controlled and showed that the decrease in 
the N-terminal fragment of titin appears to be driven by 
the presence of increased expression of microdystrophin 
protein in muscle fibers. Further, changes in titin were 
detected earlier post-treatment than changes in serum 
CK. This result was replicated in both the mdx mouse 
and the GRMD dog model, where alterations in plasma 
circulating titin occurred at lower levels of restored 
microdystrophin when compared to CK-MM.

Although the reason for the enhanced sensitivity of titin 
as compared to CK is currently unknown, a hypothesis 
is that the aptamer may exhibit greater sensitivity and/or 
specificity for the detection of titin vs. available reagents 
for quantification of CK-MM. The fact that this sensitiv-
ity was still present when compared to the CK activity 
assay in the IGNITE DMD trial suggests that additional 

biology could also be at play. It is known that titin has a 
slower rate of decline over time when compared to serum 
CK, so the window needed to detect a change could be 
greater, allowing for more sensitivity [55]. Additionally, 
it is also hypothesized that the N-terminal fragment has 
an active, specific proteolysis event that releases it into 
circulation, while serum CK is thought to leak passively 
[35–37]. More studies to analyze the overlapping and dis-
tinct biology around these markers would be beneficial.

While the added sensitivity of titin brings potential 
advantages towards evaluating therapeutic efficacy, since 
it is also a muscle-specific protein, similar to CK, it is also 
likely to decrease with age and the corresponding muscle 
loss in DMD [23, 37]. The optimal marker would possess 
a directional trajectory that is opposite that of the natural 
history of the disease, but this may be difficult to achieve 
as most muscle-specific proteins identified to date in bio-
fluids increase early in the disease state and decline as 
muscle is lost. Therefore, additional objective biomark-
ers that remain stable through later stages of disease 
that may be paired with serum CK and the N-terminal 
titin fragment would increase confidence in drug effects. 
Regardless, additional studies of urinary titin through 
the natural history of DMD, as well as its performance 
over time in clinical trials and its ability to bolster the 
interpretation of both functional outcome measures and 
microdystrophin expression itself in therapeutic trials, 
may improve the ability to detect and quantify the ben-
efits of therapeutic approaches aimed at restoring muscle 
integrity, such as microdystrophin gene therapy.

Methods
Study approval
The mouse study was performed according to the Dal-
housie University Committee on Laboratory Animals 
under an approved protocol and in compliance with 
the Canadian Council on Animal Care guidelines at 
Agada Biosciences. The approval for the dog study was 
previously published [46] and all legal guardians and/
or participants participating in the IGNITE DMD trial 
(ClinicalTrials.gov NCT03368742) provided written 
informed consent before enrollment.

Statistics
All statistical tests were run in GraphPad Prism. Means 
and standard deviations were calculated for each group. 
For analysis that included more than two groups, an ordi-
nary one-way ANOVA using multiple comparisons was 
selected and the mean of each group was compared with 
the mean of the vehicle-treated or baseline control. For 
analysis that included two groups, an unpaired para-
metric t test was used to identify significant changes in 
biomarkers.
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Biofluid collection
Plasma/serum
The blood was collected into K2EDTA tubes for plasma 
or 1.5 mL Eppendorf tubes for serum and immediately 
placed on ice. Samples were centrifuged for 10  min at 
10,000  rpm at 4℃. Supernatants from each tube were 
aliquoted to two Eppendorf tubes and stored at − 80℃ 
until further analysis. For serum CK activity, quantifi-
cation was determined using the Pointe Scientific Liq-
uid Creatine Kinase Reagent Set (ref:C7522-450).

Urine
Urine was centrifuged at 1500xg for 10  min at 4℃ to 
remove cell debris, aliquoted, and stored at − 80℃ until 
assayed.

Protein quantification
SOMAscan assay
Frozen plasma or urine aliquots were shipped to 
Somalogic, and mouse and dog plasma were run on 
SOMAscan 4 K, while the human urine was run on the 
SOMAscan Discovery Assay. Data were delivered in an 
ADAT file that contained normalized RFUs from their 
analysis pipeline.

Immunofluorescence
Isopentane frozen muscles were sectioned (8 microns) 
and stained for microdystrophin (MANEX44A, Devel-
opmental Studies Hybridoma Bank, University of 
Iowa), as previously described [46].

Mass spectrometry for mdx microdystrophin quantification
Dystrophin quantification was performed using meth-
ods previously published [46, 82, 83]. Briefly, in-gel 
digestion was performed on protein extracts from 
quadricep tissue spiked with a stable isotope inter-
nal standard. The resulting peptides were subjected 
to time-targeted parallel reaction monitoring nano-
LC–MS/MS. Quantified microdystrophin protein was 
reported as a percentage of normal dystrophin cal-
culated using a regression slope of a 5-point stand-
ard curve derived from a combination of protein from 
wild-type and dystrophin-deficient canine tissue.

Urinary titin
For Western blot analysis, 3μL of urine was separated 
by SDS-PAGE electrophoresis using a previously pub-
lished protocol [36]. The N-terminal fragment was 
detected with titin (7D3) antibody (Novus Biologi-
cals). For confirmation using ELISA, urinary titin lev-
els were quantified with the IBL ELISA kit following 

the manufacturer’s instructions. For normalization, 
the creatinine colorimetric assay (Caymen Chemicals), 
specific gravity as measured by refractometer (Laxco 
Benchtop Digital), and cystatin C ELISA (Abcam) were 
used following the manufacturer’s protocol.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13395- 023- 00334-y.
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