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attack in dysferlinopathy
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Abstract

Repair of plasma membrane tears is an important normal physiological process that enables the cells to survive a
variety of physiological and pathological membrane lesions. Dysferlin was the first protein reported to play a
crucial role in this repair process in muscle, and recently, several other proteins including Mitsugumin 53 (MG53),
annexin and calpain were also found to participate. These findings have now established the framework of the
membrane repair mechanism. Defective membrane repair in dysferlin-deficient muscle leads to the development
of muscular dystrophy associated with remarkable muscle inflammation. Recent studies have demonstrated a
crosstalk between defective membrane repair and immunological attack, thus unveiling a new pathophysiological
mechanism of dysferlinopathy. Here | summarize and discuss the latest progress in the molecular mechanisms of
membrane repair and the pathogenesis of dysferlinopathy. Discussion about potential therapeutic applications of

these findings is also provided.

Introduction

Damage to the plasma membrane induces entry of toxic
agents such as calcium and oxidants into the cells,
releases intracellular molecules producing inflammatory
responses, and threatens the afflicted cells with an
immediate cell death. Recent studies reveal a rapid
membrane repair response that is conserved in many
different types of cells to restore the plasma membrane
integrity and enables the cells to survive following a lim-
ited level of membrane disruptions [1-7]. Defects in this
process can result in pathological complications in a
number of different tissues, particularly the skeletal
muscle and heart [8-11]. Moreover, continuous release
of intracellular contents from cells with defective mem-
brane repair exposes “danger” signals to the immune
system of the host and causes further tissue damage
[12-14].

Molecular mechanism underlying muscle
membrane repair

It is known that the membrane repair process requires
intracellular vesicles [15] which deliver excess membrane
to form a “membrane patch” through Ca®*-triggered vesi-
cular exocytosis [16,17] similar to neurotransmitter
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release [18] (Figure 1). The intracellular vesicles are initi-
ally transported to the damage site via the sequential
actions of the motor proteins including kinesin and non-
muscle myosin IIA and IIB in sea urchin eggs and several
cell lines such as 3T3 fibroblasts and COS-7 [19,20].
Myosin IIB is required for the exocytosis and membrane
repair itself while myosin IIA is required in facilitation of
cell membrane repair at repeated wounds [20]. However,
the involvement of these motor proteins in muscle mem-
brane repair has not been determined. Recently, Mitsu-
gumin 53 (MG53), a muscle-specific tripartite motif
family protein (TRIM72), has also come into play in vesi-
cle translocation during muscle membrane repair
[21-26]. MG53 is observed to rapidly accumulate at the
damage site following membrane disruption. Genetic
ablation of MG53 results in a late-onset progressive ske-
letal myopathy [24] and increases susceptibility to ische-
mia/reperfusion-induced myocardial damage [25,26].
Single myocytes isolated from MG53-deficient mice
failed to reseal membrane disruptions created by laser
irradiation, focal electroporation or microneedle penetra-
tion [24-26]. Consistent with the role of MG53 to recruit
vesicles during membrane repair, electron microscopy
examination of MG53-deficient muscle fibers observed
membrane breaks without accumulation of vesicles at the
damage site [24]. These studies have suggested that
MG53 plays a role in facilitating vesicle translocation
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Figure 1 A schematic model for muscle membrane repair.
(A) In uninjured muscle, the intact sarcolemma separates the
intracellular environment from the hostile extracellular environment.
(B) Membrane disruption leads to Ca*" influx, oxidant entry and
cholesterol unfurling. Membrane repair vesicles are transported
towards the damage site by the motor proteins kinesin and myosin,
and this process may be facilitated by Mitsugumin 53 (MG53) in the
oxidation/cholesterol-dependent manner. The vesicles dock via
oxidized MG53 and fuse with each other and with the plasma
membrane possibly mediated by annexin, SNAREs and dysferlin in
the presence of Ca’*. (C) A membrane “patch” is consequently
formed, which resealed the membrane lesion.

for muscle membrane repair. Interestingly, the translo-
cation of MG53 upon membrane damage is Ca®*-inde-
pendent, but rather mediated by cholesterol exposure
and oxidation-induced oligomerization in skeletal and
cardiac muscle [24,25]. This suggests that MG53-
mediated vesicle translocation and Ca®*-triggered
vesicle-membrane fusion are two distinct steps in the
membrane resealing process. Thus, Ca®*, cholesterol
and oxidation can trigger different components of the
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membrane repair machinery to initiate the emergency
response. It is interesting what other signals could be
involved in the initiation of the membrane repair
responses. In addition to Ca** influx, cholesterol expo-
sure and oxidation, membrane damage can result in
other changes such as Na" influx and membrane poten-
tial depolarization, which may also be involved in mem-
brane repair.

After vesicle translocation, Ca2+-regulated fusion of the
vesicles with the plasma membrane is followed to form a
“membrane patch”. Intracellular vesicle fusion generally
involves the SNARE (soluble N-ethylmaleimide-sensitive
factor attachment protein receptors) proteins [27] and
synaptotagmins (Syt), transmembrane proteins with two
highly conserved C2 domains that may serve as calcium
sensors in the regulation of vesicle exocytosis in neurons
and other cell types [28]. Previous studies have demon-
strated a potential role of SNARE proteins in membrane
resealing [18,29-31]. Syt7 was shown to be involved in
membrane repair of fibroblasts [32]. Genetic ablation of
Syt7 in mice resulted in inflammatory myopathy with
extensive fibrosis, high serum creatine kinase levels and
progressive muscle weakness [33]. Moreover, recent stu-
dies reported that Sytl participates in Ca®*-dependent
repair of membranes in plants [34,35]. These studies
highlight a conservation of membrane repair mechanisms
between animal and plant cells. Structurally similar to
Syt, dysferlin contains multiple C2 domains and shows
Ca®*-sensitive phospholipid binding activities [36,37].
Dysferlin has been well established as an important
player for muscle membrane repair although the underly-
ing mechanism remains poorly understood. It is possible
that dysferlin functions as a Ca®* sensor and directly reg-
ulates the SNARE-mediated vesicle-membrane fusion
during membrane repair. Direct interactions between
dysferlin and SNARE proteins have not been established
yet. However, otoferlin, a mammalian homologue of
dysferlin, has been demonstrated to bind synaptosomal-
associated protein 25 (SNAP25) and syntaxin-1 and
directly regulate synaptic vesicle exocytosis in inner hair
cells [38,39]. Thus, establishing if dysferlin interacts with
SNARE proteins and can influence the SNARE-mediated
membrane fusion is of potential interest in future studies.
In addition to SNARE-mediated membrane fusion, other
fusogens including annexin and phospholipase A, (PLA,)
may also regulate the membrane repair process. Annexin
A1l was shown to concentrate at the site of membrane
damage and ablation of annexin Al effectively inhibits
membrane repair [40]. The activation of PLA, and the
generation of arachidonic acid promote membrane fusion
mediating neutrophil degranulation [41]. Moreover,
membrane sealing at the cut end of the giant axon has
been shown to involve the activation of PLA, [42,43].
Whether these fusogens are involved in membrane repair
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of skeletal muscle remains to be explored. The dysferlin-
interacting protein AHNAK [44] was shown to bind
phospholipase C in the presence of arachidonic acid
[45,46]. This might provide a link between dysferlin and
fusogens.

Except for dysferlin, Syt7 and MG53, the current
knowledge regarding membrane repair is largely from
non-muscle studies. Future studies are necessary to
bridge our knowledge gap in skeletal muscle membrane
repair. Since membrane repair is highly conserved dur-
ing evolution, it is no wonder that skeletal muscle may
use some of the common mechanisms as identified in
other cells to repair membrane damage. However, skele-
tal muscle cells are quite special in that they undergo
frequent mechanical stress, which causes frequent mem-
brane disruption and thus may require skeletal muscle
cells to use some unique mechanisms to satisty the high
demand of membrane repair.

New functions of dysferlin

Recent studies have revealed new functions of dysferlin
which may be linked to membrane repair and/or inflam-
matory activation. Dysferlin was observed to associate
with developing T-tubules [47,48] and interact with
dihydropyridine receptor (DHPR) [49]. Ultrastructural
analysis of dysferlin-deficient muscle revealed primary
T-tubule abnormalities similar to those seen in caveolin-
3-deficient muscle [48], suggesting that dysferlin is
required for correct T-tubule formation and/or mainte-
nance. It is intriguing to examine whether the T-tubule
is involved in muscle membrane repair and whether the
T-tubule defect in dysferlin-deficient muscle underlies
the compromised membrane repair.

Dysferlin may coordinate cytoskeleton remodeling
through its interaction with focal adhesion components.
Previous work showed that dysferlin interacts with -
parvin [50], a protein that directly interacts with integrin
linked kinase and is important for stabilizing focal adhe-
sions [51,52]. Such an interaction was further confirmed
in a recent study using proteomic analysis of the dysfer-
lin protein complex [53]. In this latter study, several
other focal adhesion molecules including vinculin, acti-
nin and talin were also identified in the dysferlin protein
complex. In addition, dysferlin was reported to interact
with a-tubulin [54]. These data suggest a role of dysfer-
lin in cytoskeleton remodeling and focal adhesion,
which have been proposed to facilitate vesicle trafficking
and fusion during membrane repair [55,56].

Recent data found that dysferlin may also be involved
in cytokine and/or chemokine secretion. Cultured myo-
blasts from dysferlin mutant mice showed impaired
secretion of cytokine MCP-1 when stimulated with IFN-y
or damaged with saponin [57]. The authors of this study
proposed that the impaired secretion of cytokines/
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chemokines in dysferlin-deficient muscle may account
for the delayed neutrophil recruitment and thus the atte-
nuated muscle regeneration [57]. A more recent study
reported that dysferlin-deficient myoblasts and myotubes
from human patients released more soluble factors
involved in monocyte chemotaxis than control cells [58].
It is unclear whether this discrepancy is due to different
species or other reasons (for example, different stages of
disease). The potential role of dysferlin in the release of
cytokines and other inflammatory mediators should be
explored in the future studies. Recently, it was found
that dysferlin is involved in the ATP release and Ca*
"-triggered intercellular signaling in response to mem-
brane wounding in fertilized sea urchin embryo [59]. Dis-
ruption of dysferlin expression by antisense morpholino
in sea urchin embryo did not compromise the plasma
membrane repair but effectively blocked the ATP release
upon membrane damage and the consequent intercellu-
lar Ca®* signaling [59]. Interestingly, a recent study
showed that skeletal muscle is capable of releasing IL-1f
in response to combined treatment with lipopolysacchar-
ide and the P2X7 receptor agonist, benzylated ATP [13],
implicating the involvement of ATP signaling in muscle
inflammation of dysferlinopathy. In contrast to the case
with sea urchin embryo where disruption of dysferlin
blocked the ATP release upon membrane damage, the
authors proposed that dysferlin deficiency in mammalian
skeletal muscle results in the ATP release possibly
through a compensatory vesicle trafficking pathway
mediated by synaptotagmin-like protein Slp2a and the
small GTPase Rab27A, which activates the inflamma-
some pathway [13]. Future study to directly measure
ATP release from dysferlin-deficient and control skeletal
muscle in response to membrane damage should be con-
ducted to validate this hypothesis. Additionally, ATP can
be released from necrotic muscle fibers.

Finally, dysferlin was found to play a role in endothe-
lial cell adhesion and angiogenesis [60,61]. Expression of
dysferlin was observed in endothelial cells [61] and leaky
brain blood vessels in multiple sclerosis [60]. Further-
more, dysferlin-deficient mice showed an impaired
angiogenic response compared with control animals
with angiogenic challenge [61], supporting an active role
for dysferlin in endothelial homeostasis. How this defect
in dysferlin-deficient subjects contributes to the patho-
genesis of skeletal muscle is of potential interest and
warrants future investigation.

Crosstalk between defective membrane repair
and immunological attack

It has been known that the immune system is able to
produce remarkable responses in the absence of infec-
tious organisms. A “danger” hypothesis has been put
forward to explain how the immunological responses
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occur in these situations [12,13,62,63] (Figure 2). In this
hypothesis, non-physiological cell death, damage or
stress of the host cells, similar to those from the infec-
tious organisms, can expose “danger” signals to the
immune system [12,63,64]. The exact mechanism by
which injured host cells influence the immunological
responses is not fully understood. Some clues come
from the observations showing that the injured cells
induce dendritic-cell maturation [65], migration to
draining lymph nodes in vivo [66], and complement
activation [67]. Thus, it appears that the injured host
cells can release endogenous adjuvants contributing to
the initiation of the immunological responses [64].

Since plasma membrane integrity is important for pre-
venting the release of endogenous molecules, a defective
membrane repair in animal cells is inevitably immunolo-
gically dangerous. Several proteins including Syt7
[32,33], dysferlin [8,9,68], MG53 [22,24,25], and annexin
A1 [40,68] have been shown to play a role in the mem-
brane repair process. Accumulating evidence suggests a
correlation between defective membrane repair and the
development of abnormal inflammatory responses. For
instance, genetic ablation of Syt7 in mice leads to the
development of pathological alterations in the skin and
skeletal muscle with many similarities to the polymyosi-
tis/dermatomyositis diseases in humans [33]. Disruption
of annexin Al also leads to complications in the inflam-
matory responses although the inflammatory responses
in annexin Al-null mice have not been attributed to its
role in membrane repair [69,70]. Dysferlinopathy is well
known for the presence of a prominent muscle inflam-
mation [71-73], and some of the dysferlinopathy patients
were even initially misdiagnosed as having polymyositis
[74,75]. Moreover, although highly resistant to lengthen-
ing-contraction-induced injury [14,57], dysferlin-
deficient muscle experienced a strong inflammatory
response that delayed its recovery from injury caused by
lengthening contractions [76,77].

Recent studies have begun to unveil the pathophysio-
logical mechanisms underlying muscle inflammation in
dysferlinopathy. Dysferlin-deficient monocytes from SJL/
J mice and dysferlinopathy patients were reported to
have increased phagocytic activity [78] and dysferlin
deficiency induces an upregulation of inflammasome
[13]. Disruption of dysferlin expression by RNA interfer-
ence in the J774 macrophage cell line also significantly
enhanced the phagocytosis, suggesting that the phagocy-
tic defect in dysferlin-deficient monocytes is likely a
direct consequence of dysferlin deficiency rather than a
secondary effect due to the muscle pathology in vivo
[78]. However, Chiu et al. in a recent paper [57] com-
mented that the phagocytic activity of dysferlin-deficient
monocytes from C57BL/10-SJL.Dysf mice that have a
more controlled genetic background was not different
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from that of control cells. The reason underlying this
discrepancy is not known. Comparison of the phagocytic
activities of the monocytes from pre-pathological and
post-pathological dysferlin mutant animals might pro-
vide some clues for this issue. Recent studies showed
that muscle-specific transgenic expression of dysferlin at
appropriate levels rescues the dystrophic phenotype in
dysferlin mutant mice [14,79], suggesting that the
enhanced phagocytic activity alone in dysferlin-deficient
monocytes is not sufficient to cause muscle damage.
Conditional knockout mice with specific disruption of
dysferlin in the monocytes will be beneficial to further
clarify this issue.

Previously, dysferlin-deficient muscle cells were
reported to be susceptible to complement attack, which
was attributed to the down-regulation of the comple-
ment regulator CD55 on the plasma membrane without
dysferlin [80]. Activation of the complement system has
been observed in dysferlin-deficient muscles from both
the mice and humans [14,80,81]. The complement sys-
tem, mainly composed of a number of circulating pro-
teins as inactive precursors, is an important part of the
innate immune system [82,83] and is involved in the
development of inflammatory diseases [84]. In addition
to protecting the hosts from the invasion of infectious
organisms, the complement system can also contribute
to the host tissue damage. This is evident in animal
models of autoimmune diseases, such as glomerulone-
phritis, hemolytic anemia, myasthenia gravis, and in two
nonimmunologically mediated forms of primary tissue
damage, burn and ischemia (for a review, see [85]). Our
recent study revealed that activation of the complement
system plays an active role in the pathogenesis of dysfer-
linopathy [14]. Up-regulation of the complement factors
in dysferlin-deficient muscles was observed in mice
before the onset of the obvious pathological hallmarks
[14]. Such an increased expression of the complement
factors was normalized by muscle-specific expression of
a dysferlin transgene [14], which also rescues the muscle
pathology observed normally in the dysferlin mutant
mice [14,79]. A genetic approach using complement-
deficient mice with the disrupted expression of C3, a
central component of the complement system, further
confirmed the active role of complement activation in
the progression of muscular dystrophy in dysferlin-
deficient mice [14]. The terminal activation of the com-
plement system produces the membrane attack complex
(MAC) which forms a large pore on the plasma mem-
brane and causes cell lysis. However, surprisingly we
found that genetic ablation of the terminal component
(C5) of the complement system had minimal effect on
muscle pathology in dysferlin-deficient mice [14]. These
results suggest that the activated C3 is responsible for
the muscle damage in dysferlinopathy. Upon activation,
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Figure 2 Defective membrane repair and muscle inflammation. Plasma membrane damage to dysferlin-deficient muscle fibers with
compromised membrane repair causes a prolonged release of “danger” molecules, such as heat shock proteins (HSPs), high mobility group box
1 (HMGB1), ATP and uric acids. These “danger” molecules are recognized by receptors on leukocytes and the muscle fibers, stimulating
generation of proinflammatory cytokines such as IL-1B. Other molecules that are exposed or released from the damaged cells activate the
complement system, followed by the generation of proinflammation mediators (for example C3a, C5a) and opsonizing C3b. The proinflammatory
mediators can trigger the production of proinflammatory cytokines from host cells and make the local vascular endothelium “leaky”, thus
attracting migration of neutrophils and monocytes. C3b binds to the negatively-charged sarcolemma, stimulating phagocytosis. These molecular
and cellular responses cause more severe muscle damage and necrosis, leading to further release of the “danger” molecules and extensive
muscle inflammation. The complement system and the inflammatory signaling pathway thus become attractive therapeutic targets for the

C3 is cleaved into C3a and C3b. C3a is an anaphylo-
toxin that produces a local inflammatory response, and
C3b serves as an opsonizing agent by coating the sarco-
lemma of dysferlin deficient muscle. Opsonization of the
sarcolemma enhances the phagocytosis of the target cell
by macrophages that are the predominant infiltrating
cells in dysferlin-deficient muscles [73], either with
or without C5. Thus, it is possible that C5 deficiency
has minimal effect in dysferlinopathy. Additionally,
nucleated cells are normally able to eliminate the cytoly-
tic MAC from the plasma-membrane via Ca®*-dependent
endocytic and exocytic processes [86].

Thus, the compromised membrane repair in the
absence of dysferlin results in the prolonged release of
endogenous “danger” molecules which lead to the local
activation of the complement system [14] and upregula-
tion of the inflammasome [13]. These “danger” mole-
cules are recognized by receptors on leukocytes and the

muscle fibers, stimulating the generation of proinflam-
matory cytokines such as IL-1f. Activation of the com-
plement system generates proinflammatory mediators
(for example, C3a, C5a) and opsonizing C3b. The proin-
flammatory mediators can trigger the production of
proinflammatory cytokines from host cells and make the
local vascular endothelium “leaky”, thus attracting
migration of neutrophils and monocytes. These molecu-
lar and cellular responses cause more severe muscle
damage and necrosis, leading to further release of the
“danger” molecules and extensive muscle inflammation.
In support of this notion, it has been reported that
the dysferlin-deficient muscle cells release more soluble
factors than control cells [58]. Damaged cells are known
to expose a number of “danger” molecules, such as
heat shock proteins (HSPs) [87,88], uric acid [89], ATP
[59], and the high mobility group box 1 (HMGB1) [90].
These molecules bind to their cellular receptors
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(Toll-like receptors (TLRs) and P2X7), activating inflam-
masome [13], nuclear factor kB (NF-xB) and the com-
plement pathways [14] (Figure 2). The HSPs can induce
complement activation in both an antibody-dependent
and -independent manner without the presence of
pathogens [67]. Interestingly, HSP70 was observed to be
rapidly released into the circulation after acute myocar-
dial infarction with the peak concentration correlated
with creatine kinase, troponin T, IL-6 and IL-8 in the
serum [91]. HMGBI, which is released by necrotic or
damaged cells and secreted by activated monocytes and
macrophages, also potently induces complement activa-
tion and inflammation [90]. HMGB1 was observed
extranuclearly in muscle biopsies from patients with
idiopathic inflammatory myopathies, and exposure of
the isolated skeletal muscle to HMGB1 caused an irre-
versible decrease in Ca** release from the sarcoplasmic
reticulum [92]. The identity of the molecules released
from the dysferlin-deficient muscle cells which can acti-
vate the complement system remains to be determined.
It is interesting to explore whether HSPs, uric acid and
HMGBI1 are elevated in the serum of dysferlinopathy
patients and animals. Disruption of these molecules (for
example by RNA interference, mutant mouse models)
should also be explored for their potentials in alleviating
the muscle pathology in dysferlin-deficient mice.

Therapeutic perspectives

Currently, there is no effective therapeutic treatment for
dysferlinopathy patients. The primary defect lies in the
defective membrane repair caused by dysferlin defi-
ciency. Thus, gene replacement therapy to restore the
expression of functional dysferlin and membrane repair
represents a great promise. However, it is still far away
from any clinical application in dysferlinopathy. Pharma-
cological interventions implicated from recent studies
represent novel avenues for the treatment of this dis-
ease. Although the efficacy of anti-inflammatory corti-
costeroids in dysferlinopathy is still controversial [93],
our recent finding using gene targeted mice demon-
strated that targeting the complement system could be a
therapeutic approach for dysferlinopathy [14]. Comple-
ment inhibition has already been explored as a thera-
peutic approach for the treatment of certain conditions
involving excessive complement attack [94,95]. Other
approaches to counteract the initiation of inflammation
are also under consideration for the treatment of dysfer-
linopathy. For example, a recent study demonstrated
that two dysferlinopathy patients treated with four
weekly infusions of rituximab to deplete B cells
improved the muscle strength in these patients [96].
Future studies of the signaling pathways to mitigate the
inflammatory responses in dysferlinopathy should shed

Page 6 of 8

new lights into the design of pharmacological therapeu-
tic strategies for the treatment of this disease.

Conclusions

A protective membrane resealing mechanism at the cell
level is highly conserved among different species and cell
types. It is mediated by exocytosis of intracellular vesicles
forming a membrane “patch” at the disruption site. This
process requires the participation and coordination of a
large group of proteins involving cytoskeleton remodel-
ing, vesicle translocation, and membrane fusion. Some of
these proteins have recently been discovered and linked
to human diseases, emphasizing the importance of the
membrane repair proteins in life. An acute membrane
repair mechanism not only prevents damaged cells from
necrosis, but also reduces the exposure of “danger” sig-
nals to the immune system, which otherwise amplify the
signals and cause massive tissue injury.
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