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Abstract

young adults after acute RE.

stable isotopic tracer techniques, respectively.

prevent sarcopenia.

Background: Sarcopenia, the loss of skeletal muscle mass during aging, increases the risk for falls and dependency.
Resistance exercise (RE) training is an effective treatment to improve muscle mass and strength in older adults, but
aging is associated with a smaller amount of training-induced hypertrophy. This may be due in part to an inability
to stimulate muscle-protein synthesis (MPS) after an acute bout of RE. We hypothesized that older adults would
have impaired mammalian target of rapamycin complex (mTORC)1 signaling and MPS response compared with

Methods: We measured intracellular signaling and MPS in 16 older (mean 70 + 2 years) and 16 younger (27 + 2
years) subjects. Muscle biopsies were sampled at baseline and at 3, 6 and 24 hr after exercise. Phosphorylation of
regulatory signaling proteins and MPS were determined on successive muscle biopsies by immunoblotting and

Results: Increased phosphorylation was seen only in the younger group (P< 0.05) for several key signaling proteins
after exercise, including mammalian target of rapamycin (mTOR), ribosomal S6 kinase (S6K)1, eukaryotic initiation
factor 4E-binding protein (4E-BP)1 and extracellular signal-regulated kinase (ERK)1/2, with no changes seen in the
older group (P >0.05). After exercise, MPS increased from baseline only in the younger group (P< 0.05), with MPS
being significantly greater than that in the older group (P <0.05).

Conclusions: We conclude that aging impairs contraction-induced human skeletal muscle mTORC1 signaling and
protein synthesis. These age-related differences may contribute to the blunted hypertrophic response seen after
resistance-exercise training in older adults, and highlight the mTORC1 pathway as a key therapeutic target to

Introduction

Maintenance of skeletal muscle mass is largely depen-
dent on the dynamic relationship of muscle-protein bal-
ance, which is the relationship between protein
synthesis and protein breakdown. A net negative protein
balance is indicative of muscle atrophy, whereas a net
positive balance yields an accrual of muscle proteins. In
numerous disease states, such as HIV/AIDS, cancer,
sepsis and renal failure, the rate of muscle-protein
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breakdown exceeds that of synthesis, and catabolism of
muscle occurs, resulting in measurable atrophy [1-3].
Loss of muscle mass also occurs with the aging process
(sarcopenia), although the atrophy of aging is not as
severe as that seen in various disease states, as it arises
over the span of several decades. Resting rates of muscle
protein turnover have been investigated to explain the
age-related loss of muscle mass, but most recent studies
have failed to show any difference between young and
older adults [4-8]. It is likely that the decrement in mus-
cle mass with advanced age is due to inadequate stimu-
lation of muscle-protein synthesis (MPS) after anabolic
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stimuli, such as resistance exercise or meal ingestion
[4,9-14].

Resistance exercise is capable of increasing muscle
mass through direct stimulation of MPS, which, over
time, induces contractile protein accumulation and
hypertrophy of individual muscle fibers. The fractional
synthetic rate (FSR) of muscle proteins has been shown
to be increased in as little as 1 hour [15] and for as long
as 48 hours [16-18] after an unaccustomed, acute bout
of resistance exercise. There is ample evidence support-
ing resistance-exercise training as a valuable interven-
tion to induce muscle hypertrophy in young people.
Less research has been conducted in aging populations,
with some studies suggesting an age-related decline in
the efficacy of resistance-exercise training (RET) to
enhance muscle size and strength [19-21].

The reduced response to RET in older people may be
due to an inability of the exercise bout to accelerate
MPS [13,14]. An appealing candidate mechanism under-
lying the blunted anabolic effect of exercise in older per-
sons is reduced activation of the mammalian target of
rapamycin complex (mTORC)1. The mTORC]1 signaling
pathway is recognized as a key regulator of translation
initiation and overall cell growth [22-25], and is impor-
tant in the hypertrophic response after resistance exer-
cise [26,27]. Our laboratory recently reported that
mTORCI activation is necessary for the resistance exer-
cise-induced stimulation of MPS, as administration of
rapamycin (a specific mTOR inhibitor) to humans
before exercise prevented the contraction-induced
increase in MPS [28]. After a bout of high-intensity
resistance exercise, a rapid increase in the phosphoryla-
tion of extracellular signal-regulated kinase (ERK)1/2
and its downstream substrates was also shown [29-31].
Recent research has identified age-related differences in
the mitogen-activated protein kinase (MAPK) signaling
pathway, both at baseline and after exercise, which may
also contribute to the differential response of skeletal
MPS to resistance exercise in young and older adults
[29,30].

An inability to fully activate the mTORC1 and other
anabolic signaling pathways could be driving the blunted
MPS response to an acute bout of resistance exercise in
older adults, thereby hindering gains in muscle mass
and strength with prolonged resistance training.

The aim of this study was to carry out a detailed and
extended time-course investigation looking at the
24 hour response to an acute bout of resistance exercise
in young and older adults to assess any age-related dif-
ferences. We hypothesized that the older adults would
have a blunted phosphorylation of several key intracellu-
lar proteins in the mTORC1 and the MAPK pathway
signaling pathways, resulting in an impaired MPS
response after resistance exercise.
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Results

Study design

Blood was sampled throughout the study, and muscle
samples were taken at the times indicated (X) in Figure 1.
Exercise was performed after the second biopsy was taken.

Plasma lactate, glucose and insulin

Plasma lactate values increased significantly during exer-
cise in both groups (P <0.05; data not shown), with no
differences between groups (P >0.05). Lactate concentra-
tion was similar in both groups throughout the duration
of the study (P >0.05).

Plasma glucose levels decreased significantly at
6 hours after exercise in both groups (P <0.05; data not
shown), with no differences between groups (P >0.05).

Plasma insulin levels were not different at baseline,
and did not change significantly after exercise in either
group (P >0.05; data not shown).

mTORC1 signaling
Phosphorylation of Akt (Ser473) was increased at
3 hours after exercise in the younger group (P <0.05)
(Figure 2A). The older group showed no significant
changes in the phosphorylation of Akt (P> 0.05) (Figure
2A). However, at 24 hours after exercise, phosphoryla-
tion of Akt was significantly lower in the older group
compared with the younger group (P <0.05) (Figure 2A).

Phosphorylation of mTOR (Ser2448) was increased at
3, 6 and 24 hours after exercise in the younger group
(P< 0.05) (Figure 2B) with no significant changes
observed in the older group after exercise (P> 0.05) (Fig-
ure 2B). mTOR phosphorylation in the older group was
significantly lower than in the younger group (P< 0.05)
at 24 hours after exercise (Figure 2B).

S6K1 (Thr389) phosphorylation increased significantly
from baseline in the younger group at 3, 6 and 24 hours

Day 1:
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Resistance Exercise
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Figure 1 Study design. Blood was sampled throughout the study
and muscle samples were taken at the times indicated (X). Exercise
was performed after the second biopsy.
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Figure 2 Akt, mammalian target of rapamycin (mTOR), S6 kinase (S6K)1, eukaryotic initiation factor 4E-binding protein (4E-BP)1. Data
represent phosphorylation fold change of Akt at Ser473 (A), mTOR at Ser2448 (B), S6K1 at Thr389 (C) and 4E-BP1 at Thr37/46 (D) at baseline, 3,

6 and 24 hours after exercise. Representative immunoblot images are shown. Significantly different from *baseline (P <0.05); “from older subjects
(P <0.05).

after exercise (P< 0.05) (Figure 2C). S6K1 phosphoryla-  (Figure 3B). rpS6 phosphorylation increased from base-
tion did not change in the older group (P> 0.05) (Figure line at 3 and 6 hours after exercise in the older group
2C), and at 6 and 24 hours after exercise, phosphoryla-  (P< 0.05) (Figure 3B). Although there were no signifi-
tion of S6K1 in the older group was lower than that of cant differences between the groups, rpS6 phosphoryla-
the younger group (P< 0.05) (Figure 2C). tion was greater in the younger group, and this

Phosphorylation of eukaryotic initiation factor 4E-bind-  difference approached statistical significance (P = 0.08)
ing protein (4E-BP)1 (Thr37/46) was increased at 6 hours  (Figure 3B).
after exercise in the younger group compared with base-
line values (P< 0.05) (Figure 2D). We observed no  Total protein content
changes in phosphorylation in the older group (P> 0.05) Total protein content of Akt, mTOR, S6K1, 4E-BP1,
(Figure 2D); however, at 6 and 24 hours after exercise, ERK1/2 and rpS6 did not change during the 24 hours of
4E-BP1 phosphorylation was significantly lower in the  post-exercise recovery (P >0.05) (Figure 4).
older than in the younger group (P< 0.05) (Figure 2D).

Additional regulators of mTORC1

MAPK signaling In an attempt to identify why mTORCI signaling was
The phosphorylation of ERK1/2 (Thr202/Tyr204) inhibited in older adults after resistance exercise, we
increased significantly from baseline at 6 and 24 hours  measured several different proteins including insulin-like
after exercise in the younger group (P< 0.05) (Figure growth factor (IGF)-1, myostatin, Smad2 phosphoryla-
3A). The older group showed no changes across time tion and adenine monophosphate protein kinase
(P> 0.05) (Figure 3A). Phosphorylation of ribosomal pro- (AMPK)a phosphorylation. At each time point after
tein (rp)S6 (Ser235/236) was increased at 3, 6 and  exercise (P >0.05) for any of these four proteins, we
24 hours after exercise in the younger group (P< 0.05)  could not find any differences that would have provided
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Figure 3 Extracellular signal-regulated kinase (ERK)1/2 and ribosomal protein (rp)S6. Data represent phosphorylation fold change of
(A) ERK1/2 at Thr202/Tyr204 and (B) rpS6 at Ser235/236 at baseline, and 3, 6 and 24 hours after exercise. Representative immunoblot images are
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Figure 4 Total protein content. Representative immunoblot
images for Akt, mammalian target of rapamycin (mTOR), S6 kinase
(S6K)1,, eukaryotic initiation factor 4E-binding protein (4E-BP)1,
extracellular signal-regulated kinase (ERK)1/2, ribosomal protein (rp)
S6 and a-tubulin. Protein content did not change during
postexercise recovery in either group (P> 0.05).

insight into the differential mTORCI1 signaling response
between young and older adults (data not shown). We
also measured Pax7 mRNA expression (a marker of
satellite cell activation) but found no differences
between groups (P> 0.05; data not shown).

MPS

The mixed muscle protein FSR was similar in both
groups at rest (P >0.05) (Figure 5), but after exercise the
rate of MPS significantly increased in both groups com-
pared with baseline values (P <0.05) (Figure 5). How-
ever, MPS in the younger subjects increased to a greater
extent than in the older subjects after exercise (P <0.05)
(Figure 5).

Association between mTORC1 signaling and MPS
The extent of phosphorylation of mTOR (Ser2448) was
significantly related to the extent of MPS at 24 hours

——— Younger Adults
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Figure 5 Mixed muscle protein fractional synthetic rate (FSR).
Muscle protein synthesis as expressed by the mixed muscle FSR
(%/hour) in younger and older subjects at rest and at 3, 6 and 24
hours after exercise. *Main effect for time (P <0.05); #significantly
different from older subjects (P <0.05).
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after exercise in young subjects only (P = 0.01) (Figure
6A), with no significant association seen in older sub-
jects (P = 0.71) (Figure 6B).

The extent of phosphorylation of S6K1 (Thr389) was
significantly related to the extent of MPS at 24 hours
after exercise in young subjects only (P = 0.04) (Figure
6C), with no significant association seen in older sub-
jects (P = 0.69) (Figure 6D).

Discussion

In the current study, we assessed age-related differences
in translation initiation signaling and mixed muscle pro-
tein FSR in the 24 hours period after an acute bout of
resistance exercise. We report, for the first time, a
detailed time-course study of the differential aging
response after high-intensity resistance exercise. Recent
studies have shown a blunted initial anabolic response
to exercise with aging [13,14]; however, we studied
molecular signaling and MPS data over an extended
recovery period, detailing more fully the age-related dif-
ferences after exercise. We found that MPS and asso-
ciated translational signaling through the mTORC1 and
MAPK pathways are upregulated at multiple post-exer-
cise time points in younger subjects, with a depressed
response in both intracellular signaling and MPS after
an acute bout of resistance exercise in older subjects.

High-intensity resistance exercise is well established as
a potent stimulus for MPS and hypertrophy in young
adults [13,14,16,19,32-34], and we have shown that a
single bout of resistance exercise at 70% 1 repetition
maximum (1RM) increases MPS during exercise recov-
ery [15]. In the current study, we observed an increase
in the rate of MPS at all post-exercise time points in
our younger subjects. The rate of protein synthesis was
highest in younger subjects at 24 hours after exercise,
with a 53% increase from baseline measures. We
observed a much less robust change in the rate of MPS
in older subjects after exercise, which is in agreement
with previous research showing a blunted protein synth-
esis response in the very acute (< 4 hours) post-exercise
period for older people [13,34]. Recent research has sug-
gested a reduced hypertrophic response to resistance
training in older adults [19-21,35], perhaps because an
acute bout of resistance exercise cannot adequately sti-
mulate MPS in this group, leading to a blunted accrual
of muscle proteins over time after repeated bouts of
exercise.

We also assessed the expression of several key signal-
ing proteins in this study. Several proteins in the
mTORCI1 signaling pathway, including Akt, mTOR,
S6K1 and 4E-BP1, showed increased phosphorylation
after exercise in younger subjects. Increased phosphory-
lation of these proteins is indicative of improved transla-
tion initiation. Similarly, we previously found an increase
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Figure 6 Relationship between muscle protein fractional synthetic rate (FRS) and extent of phosphorylation of S6 kinase (S6K)1 and
mammalian target of rapamycin (mTOR), at 24 hours after exercise. There was a significant relationship (P = 0.01) between the degree of
phosphorylation of mTOR (Ser2448) (AU) and mixed muscle protein fractional synthetic rate (%/hour) at 24 hours after exercise in (A) the young
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(C) young group only, with (D) no significant relationship seen in the older group (P = 0.69). Note: some points overlaid.

in phosphorylation of several mTORC1-associated pro-
teins after a bout of high-intensity resistance exercise
[15], and we recently reported that the contraction-
induced increase in MPS is dependent on mTORC1
activation in human muscle through the use of a specific
mTOR inhibitor [28]. Several studies have shown that
the gradual activation of mTORC]1 and its downstream
target S6K1 in the recovery phase after high-intensity
resistance exercise [15,36,37] is associated with
increased protein synthesis [25,26,38,39]. The degree of
S6K1 phosphorylation in the first few hours after an
acute bout of high-intensity resistance exercise has been
strongly correlated with the percentage change in mus-
cle mass after several weeks of high-intensity RET in
both rodents [26] and humans [27]. The lack of phos-
phorylation of mTORC1-associated proteins after

exercise in older subjects may partly explain the blunted
MPS response.

Similar to our findings of an age-related decline in
mTORCI signaling, Kumar et al. recently reported an
age-related differential response to resistance exercise,
with older subjects failing to show improved phosphory-
lation of two key targets of mTOR, S6K1 and 4E-BP1, at
1 hour after exercise [13]. However, our findings con-
trast with another recent study: Mayhew et al. did not
find significant age-related decrements in translational
signaling, although they did observe a blunted protein-
synthesis response [14]. These differences may be due to
different exercise protocols, and some age-related differ-
ences may have been missed because sampling of mus-
cle was performed only at 24 hours after exercise in the
Mayhew study [14]. The current study expands upon
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the findings from these studies, showing for the first
time that older adults continue to display a blunted sig-
naling response in the 24 hour period after resistance
exercise, with only younger adults showing significant
increases in phosphorylation, most of which peak at
6 hours after exercise.

We also found a positive correlation between the
extent of phosphorylation of both mTOR and S6K1 and
MPS in human skeletal muscle at 24 hours after exercise
in young adults. These findings support previous
research in rats and humans, showing that the extent of
S6K1 phosphorylation predicted total muscle accretion
after resistance training [26,27]. Our findings support an
integral role for S6K1 in stimulating MPS after resis-
tance exercise, as short-term changes in both predict
muscle protein accrual over repeated bouts of exercise.
We also noted a lack of correlation between mTOR and
S6K1 phosphorylation and MPS in older subjects, which
corresponds with the blunted MPS response to exercise
that we found. The lack of association between signaling
and MPS may help explain why recent studies have
noted a blunted hypertrophy response after RET in
older men [19-21,35].

Although mTORCI1 signaling has been shown to be
vital in regulating protein synthesis after exercise, other
pathways are also involved (for example, the mitogen-
activated protein kinase (MAPK) pathway). ERK1/2 can
activate the eukaryotic initiation factor 4E, a translation
initiation factor, through its downstream target MAPK-
interacting kinase 1 [29,30,40]. In addition, ERK1/2 is
also capable of phosphorylating rpS6 (via p90 ribosomal
S6K 1) on its Ser235/236 regulatory site [41,42]. How-
ever, rpS6 can also be phosphorylated by S6K1 on both
its Ser235/236 and Ser240/244 regulatory sites [43].
rpS6 is associated with increased translation of mRNAs
involved in the synthesis of ribosomal proteins, along
with elongation and initiation factors necessary for
translation [44,45]. After a bout of high-intensity resis-
tance exercise, phosphorylation of ERK1/2 and its down-
stream substrates rapidly increases [29-31]. Recent
research also illustrates the age-related differences at
baseline and after exercise in the MAPK-associated pro-
teins, a potential mechanism that may help explain the
age-related discrepancy in skeletal MPS response after
resistance exercise [29,30]. In agreement with those stu-
dies, we previously found that the phosphorylation of
ERK1/2 is blunted in older adults after a bout of high-
intensity resistance exercise and essential amino acid
ingestion [31]. In the current study, we observed an
increase in ERK1/2 phosphorylation at 6 and 24 hours
after exercise in young but not older subjects. The phos-
phorylation of rpS6 was also significantly increased in
younger subjects at all post-exercise time points, and
phosphorylation of rpS6 tended to be greater in younger
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than in older subjects (P = 0.08). These data indicate
that activation of both the mTORC1 and MAPK signal-
ing pathways probably contributes to the MPS response
after resistance exercise, and in this study we found a
blunted response in both signaling pathways after resis-
tance exercise in older adults.

Although our data provide evidence for dysregulation
in mTORCI1 signaling after resistance exercise in older
adults, we are unable to definitively determine the factor
(s) responsible for the reduced mTORCI1 signaling
response in older adults in the present study. In an
effort to address this question, we examined several
upstream regulators of mTORC]1, including IGF-1,
myostatin, Smad2 and AMPK phosphorylation, but we
did not detect any group differences for any of these
proteins after exercise. We did find that Smad2 phos-
phorylation increased at 6 and 24 hours after exercise in
both groups (P< 0.05), but because there were no group
differences, it does not seem likely that the myostatin/
TGF-B-Smad2/3 signaling pathway and AMPK are
responsible for the reduced mTORC]1 signaling response
in older adults after resistance exercise.

Conclusions

In summary, an acute bout of high-intensity resistance
exercise stimulates MPS and enhances phosphorylation of
proteins in both the mTORC1 and MAPK signaling path-
ways during the 24 hour post-exercise recovery period in
young but not older adults. Consequently, concurrent acti-
vation of both the mTORC1 and MAPK signaling path-
ways seems to be an important cellular mechanism for
enhanced MPS after resistance exercise, and the inability
to activate these pathways probably contributes to
the impaired MPS response associated with aging. The
reduced gains in muscle mass and strength after resistance
training in older adults may be caused by the impaired
response to an acute bout of exercise. With aging, skeletal
muscle mTOR signaling seems to be fully functional, as
other mTORC]1 regulators such as insulin [46] and amino
acids [31] are capable of activating mTORCI signaling and
protein synthesis. Therefore, mMTORCI1 is an important
pathway to target in future evidence-based rehabilitation
interventions to counteract sarcopenia.

Methods

The study was approved by the Institutional Review
Board of the University of Texas Medical Branch and
carried out in accordance with principles of the Declara-
tion of Helsinki. All subjects gave informed written con-
sent before participating in the study.

Subjects
We studied 16 young (eight men, eight women; mean *
SD age 27 + 2 years) and 16 older (eight men, eight
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women; 70 + 2 years) subjects. Demographic informa-
tion is given in Table 1. All subjects were healthy and
physically active but were not currently engaged in an
exercise training program. Screening of subjects
included clinical history, physical examination, stress
test, laboratory investigations (complete and differential
blood counts, liver and kidney function tests, coagula-
tion profile, fasting blood glucose and oral glucose toler-
ance test, thyroid-stimulating hormone, lipid profile,
urinalysis, drug screening and tests for hepatitis B and C
viruses and HIV ), and electrocardiography. On two
separate occasions (> 7 days apart) and > 7 days before
the study was conducted, each subject was tested for
muscle strength by measuring their IRM on a leg exten-
sion machine (Cybex-VR2, Medway, MA, USA) located
within the exercise laboratory of the Institute for Trans-
lational Sciences Clinical Research Center (ITS-CRC) of
the University of Texas Medical Branch. The higher of
the two 1RM values obtained was used to determine the
weight (70% of 1RM) for the resistance exercise portion
of the study.

Study design

Each subject was admitted to the ITS-CRC the day
before the exercise study, and dual-energy X-ray absorp-
tiometry (Hologic QDR 4500 W; Bedford, MA, USA)
was performed to measure body composition and lean
mass. The subjects were then fed a standard dinner (12
kcal/kg of body weight; 60% carbohydrate, 20% fat and
20% protein) and a snack at 22.00 hours, prepared by
the Bionutrition Division of the ITS-CRC. The subjects
were studied after an overnight fast under basal condi-
tions, and they refrained from exercise for 48 hours
before study participation. All subjects were studied dur-
ing the same time of day (04.00-16.00 for infusion study
1. and 04.00-09.00 for infusion study 2).

Table 1 Subject characteristics

Younger Older
Subjects, n (M:F) 16 (8:8) 16 (8:8)
Characteristics®
Age, years 27 %2 70 + 29
Weight, kg 702 + 3.1 669 + 30
Height, cm 1672 £ 30 1659 + 2.5
BMI ®, kg/m? 251 + 09 242 + 06
Body fat, % 283 £ 22 315+ 20
Lean mass, kg 484 + 32 437 + 27
Bilateral leg extension 1RM €, kg 929 £ 90 624 + 56°
1RM/lean mass 19 40,1 14+ 01°

“Values are means * SE.

PBMI; = body mass index.

“1RM; = 1 repetition maximum.

9Significantly different from younger group (P <0.05).
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Infusion study 1

The morning of the infusion study, at 04.00, an 18 G
polyethylene catheter was inserted into an antecubital
vein for tracer infusion. Another 18 G polyethylene
catheter was inserted retrogradely in a hand vein of the
contralateral arm, which was kept in a heated pad for
arterial blood sampling. After a background blood sample
was drawn, a primed continuous infusion of L—[ring—13C6]
phenylalanine (Sigma-Aldrich, St. Louis, MO, USA) was
begun, and maintained at a constant rate until the end of
the experiment (Figure 1). The priming dose for the
labeled phenylalanine was 2 umol/kg and the infusion
rate was 0.05 pmol/kg/min. At 2.5 hours after the initia-
tion of the tracer infusion, the first muscle biopsy was
taken from the lateral portion of the vastus lateralis of
the leg, with the biopsy site at between 150 and 250 mm
from the mid patella. The biopsy was taken using a 5 mm
Bergstrom biopsy needle under sterile procedure and
local anesthesia (1% lidocaine). Muscle tissue was imme-
diately blotted and frozen in liquid nitrogen, and stored
at -80°C until analysis. Two hours after the first biopsy, a
second biopsy was taken from the same incision. The
biopsy needle was inclined at a different angle so that the
second biopsy was taken approximately 50 mm apart
from the first. This method has been previously used by
us [15,31,47] and others [48-50]. After the second muscle
biopsy, subjects were seated on the leg-extension
machine to begin the exercise portion of the study. Sub-
jects completed a warm-up set of 10 repetitions at 45%
1RM and eight sets of 10 repetitions at 70% 1RM with
3 minutes of rest between each set. Inmediately after the
last set, a third muscle biopsy was taken from the same
incision. Total time for the exercise period was approxi-
mately 45 minutes. Blood was obtained at selected inter-
vals over the next 3 hours, and muscle biopsies were
sampled from a new incision, approximately 50 mm
proximal to the first, at 3 and 6 hours after exercise.
After collection of the fifth muscle biopsy, infusion study
1 was concluded and subjects were given a standard
lunch. Subjects were also fed a dinner and snack similar
to that on the previous night, before an overnight fast in
preparation for the second infusion protocol.

Infusion study 2

The morning of the second infusion study, at 04.00, an
18 G polyethylene catheter was inserted into an antecubi-
tal vein for tracer infusion. Another 18 G polyethylene
catheter was inserted retrogradely in a hand vein of the
contralateral arm, which was kept in a heated pad for
arterial blood sampling. After a background blood sample
was drawn, a primed continuous infusion of L-[ring—13C6]
phenylalanine (Sigma-Aldrich) was begun, and main-
tained at a constant rate until the end of the experiment
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(Figure 1). The priming dose for the labeled phenylala-
nine was 2 pmol/kg and the infusion rate was 0.05 pmol/
kg/min. At 2.5 hours after the initiation of the tracer
infusion, the first muscle biopsy was taken from the lat-
eral portion of the vastus lateralis of the contralateral leg
from infusion study 1 with the biopsy site between 150
and 250 mm from the mid patella. The biopsy was taken
using a 5 mm Bergstrom biopsy needle under sterile pro-
cedure and local anesthesia (1% lidocaine). Muscle tissue
was immediately blotted and frozen in liquid nitrogen,
and stored at -80°C until analysis. Two hours after the
first biopsy, a second biopsy was taken from the same
incision. The biopsy needle was inclined at a different
angle so that the second biopsy was taken approximately
50 mm apart from the first. After collection of the second
muscle biopsy, infusion study 2 was concluded.

SDS-PAGE and western blot analysis

Details of the immunoblotting procedures have been
published previously [15]. Briefly, approximately 30 to
50 mg of frozen tissue was homogenized (1/9 w/v),
separated by centrifugation at 3400 g for 10 minutes at
4°C, followed by the removal of the supernatant. Total
protein concentrations were determined by using the
Bradford assay (Smartspec Plus spectrophotometer; Bio-
Rad, Hercules, CA, USA). The supernatant was diluted
(1:1) in a sample buffer mixture containing 125 mmol/L
Tris (pH 6.8), 25% glycerol, 2.5% SDS, 2.5% B-mercap-
toethanol and 0.002% bromphenol blue, and then boiled
for 3 minutes at 100°C. Each sample (50 pg of total pro-
tein) was loaded in duplicate on a 7.5% or 15% polyacry-
lamide gel (Criterion; Bio-Rad), and separated by
electrophoresis (150 V for 1 hour). A molecular weight
ladder (Precision Plus protein standard; Bio-Rad) and a
normalization control were also included on each gel.
After electrophoresis, proteins were transferred to a
polyvinylidene difluoride membrane (Bio-Rad) at 50 V
for 1 hour. Blots were incubated with a single primary
antibody overnight at 4°C (see below). The next morn-
ing, blots were incubated in secondary antibody for
1 hour at room temperature. Chemiluminescent solution
(ECL plus; Amersham BioSciences, Piscataway, NJ, USA)
was applied to each blot. After 5 minutes of incubation,
optical density measurements were obtained with a
phosphoimager (Bio-Rad) and densitometric analysis
was performed (Quantity One software, version 4.5.2;
Bio-Rad). Membranes containing phosphodetected pro-
teins were stripped of primary and secondary antibodies,
then re-probed for total protein. Total protein was
determined for each blot, which did not change from
baseline over the course of the experiment (Figure 4).
An internal loading control (a-tubulin) was also
assessed to ensure that a traditional housekeeping gene
product was not changing over time (Figure 4).
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However, for consistency with our previous publications
[15,51-53], data are presented as phosphorylation status
relative to the standard loading control that was loaded
on every gel, and then expressed as a fold change from
baseline.

Antibodies

The following primary antibodies were used: phospho-
Akt (protein kinase B) (Ser473), phospho-mTOR
(Ser2448), phospho-p70 S6K1 (Thr389), phospho-rpS6
(Ser235/236), phopsho-4E-BP1 (Thr37/46), phospho-
ERK1/2 (Thr202/Tyr204), phospho-Smad2 (Ser465/467),
phospho-AMPK (Thr172), total Akt, total mTOR, total
p70 S6K1, total rpS6, total 4E-BP1, total ERK1/2, total
Smad2, total AMPK and total o-tubulin (all from Cell
Signaling, Beverly, MA, USA), total myostatin (Millipore,
Billerica, MA, USA) and total IGF-1 (Santa Cruz Bio-
technologies, Santa Cruz, CA, USA). All antibodies were
used in a dilution of 1:1000 except for phospho-S6K1
(1:500) and o.-tubulin (1:30,000). Anti-rabbit IgG horse-
radish peroxidase-conjugated secondary antibody
(1:2000) was purchased from Amersham Biosciences
(Piscataway, NJ, USA). Fold change mRNA expression
for Pax7 was measured using the 2°**“" method as
reported previously [53] using 2-Microglubulin as the
housekeeping gene.

Plasma glucose/lactate/insulin

Plasma glucose and lactate concentrations were mea-
sured using an automated lactate analyzer (YSI, Yellow
Springs, OH, USA). Plasma concentrations of insulin
were determined (Millipore) via ELISA at selected time
points according to the manufacturer’s instructions.

Muscle fractional synthesis rate

Muscle intracellular free amino acids and muscle pro-
teins were extracted as previously described [54,55].
Muscle intracellular free concentration and enrichment
of phenylalanine was determined by gas chromatogra-
phy-mass spectrometry (GC-MS, 6890 Plus GC, 5973N
MSD, 7683 autosampler, Agilent Technologies, Palo
Alto, CA, USA) using appropriate internal standard
(L-[*3C,, 15N]phenylalanine) [54,55]. Mixed muscle pro-
tein-bound phenylalanine enrichment was analyzed by
GC-MS after protein hydrolysis and amino acid extrac-
tion [54,55], using external standard curve [56]. We cal-
culated the fractional synthetic rate of mixed muscle
proteins (FSR) by measuring the incorporation rate of
the phenylalanine tracer into the proteins (AEp/f) and
using the precursor-product model to calculate the
synthesis rate:

FSR = (AEp/t) /[ (Epy +Epp ) /2 [x60%100,
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where AEp is the increment in protein-bound pheny-
lalanine enrichment between two sequential biopsies, ¢
is the time between the two sequential biopsies, and
Enmi and Eypp are the phenylalanine enrichments in the
free intracellular pool in the two sequential biopsies.
Data are expressed as percentage per hour.

Statistical analysis

All values are expressed as means + SE. Comparisons
were performed using ANOVA with repeated measures,
the effects being group (younger, older) and time (base-
line, and 3, 6 and 24 hours after exercise). Post hoc test-
ing was performed using Bonferroni correction where
appropriate. If a test of normality and/or equal variance
failed, simple transformations were performed. Where
appropriate, correlations were tested by assessing the
existence of a linear fit between the extent of phosphor-
ylation of mTORC1-associated proteins and MPS. Sig-
nificance was set at P < 0.05. All analyses were
performed with SigmaStat software (version 11.0; Systat
Software Inc, San Jose, CA, USA).
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