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Abstract

Background: Euchromatic histone-lysine N-methyltransferase 2 (G9a/Ehmt2) is the main enzyme responsible for the
apposition of H3K9 di-methylation on histones. Due to its dual role as an epigenetic regulator and in the regulation
of non-histone proteins through direct methylation, G9a has been implicated in a number of biological processes
relevant to cell fate control. Recent reports employing in vitro cell lines indicate that Ehmt2 methylates MyoD to
repress its transcriptional activity and therefore its ability to induce differentiation of activated myogenic cells.

Methods: To further investigate the importance of G9a in modulating myogenic regeneration in vivo, we crossed
Ehmt2"¢? mice to animals expressing Cre recombinase from the Myod locus, resulting in efficient knockout in the
entire skeletal muscle lineage (Ehmt2*™°P).

Results: Surprisingly, despite a dramatic drop in the global levels of H3K9me2, knockout animals did not show any
developmental phenotype in muscle size and appearance. Consistent with this finding, purified Ehmt27™°P satellite
cells had rates of activation and proliferation similar to wild-type controls. When induced to differentiate in vitro,

Ehmt2 knockout cells differentiated with kinetics similar to those of control cells and demonstrated normal capacity
to form myotubes. After acute muscle injury, knockout mice regenerated as efficiently as wildtype. To exclude possible

in vivo.

Regeneration, Myod

compensatory mechanisms elicited by the loss of G9a during development, we restricted the knockout within adult
satellite cells by crossing Enmt2™ mice to Pax7""1? and also found normal muscle regeneration capacity.

Conclusions: Thus, Ehmt2 and H3K9me2 do not play significant roles in skeletal muscle development and regeneration
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Background

The formation of skeletal muscle begins in the embry-
onic somites [1], which generate the primary myotome
and the first primitive myogenic structure containing
muscle progenitors. Morphogen gradients including
sonic hedgehog (Shh) [2, 3] and Wingless (Wnt) [4]
ensure initial myogenic specification by controlling the
expression of myogenic regulatory factors (MRFs—Myf5,
Myod, Myog, and Mrf4)—a conserved family of muscle-
specific basic helix-loop-helix (bHLH) transcription fac-
tors responsible for myogenic lineage commitment and
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differentiation. Embryonic muscle progenitors migrate,
expand, and undergo subsequent waves of myogenesis
persisting through fetal and early neonatal development
resulting in the formation of the different skeletal mus-
cles of the adult.

A proportion of fetal myoblasts also become localized
underneath the basal lamina of newly formed myofibers.
These cells become specified as satellite cells—the quies-
cent, tissue resident stem cell of the skeletal muscle,
identifiable by the expression of paired box transcription
factor, paired box 7 (Pax7). Satellite cells are responsible
for the regenerative potential of the muscle and, upon
acute injury, break quiescence and mimic their develop-
mental programs by expanding rapidly, upregulating
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MRFs and differentiating to form new myofibers. In
mice, this process leads to near-complete tissue regener-
ation and restoration of muscle function.

Despite much knowledge about the key transcription
factors regulating myogenesis, the epigenetic landscapes
required for the control of gene expression in skeletal
muscle differentiation remain less well understood.
Epigenetic mechanisms including different modifications
on the unstructured C-terminals (tails) of histone pro-
teins have an increasingly appreciated role in controlling
gene expression during myogenesis [5]. Some studies
[6-8] have found that specific histone acetyltransferases
can interact with Myod and acetylate histones associated
with muscle-specific genes, thereby activating their tran-
scription. Recent genome-wide analyses have uncovered
dynamic epigenetic changes during myogenesis [9], in-
cluding the loss of histone 2B (H2B) ubiquitination [10].
Chromatin immunoprecipitation (ChIP)-seq analyses
have also revealed the importance of bivalent domains
containing both H3K4mel and H3K27ac in regulating
muscle enhancers during myogenesis [9]. These data
also point to Myod as playing a key role in the recruit-
ment of chromatin-modifying enzymes and transcription
factors to activate such enhancers [11, 12].

A less well-characterized histone mark in myogenesis is
H3K9me2, produced by euchromatic histone-lysine N-
methyltransferase 2 (Ehmt2) (MGL: 2148922), also known
as G9a. This Su (var)3-9 and enhancer of zeste (SET) do-
main containing methyltransferase dimerizes with its close
homologue Ehmtl (aka Glp) to induce H3K9me2 [13].
Knockout of Ehmt2 leads to a global reduction of
H3K9me2 levels and early embryonic lethality in mice,
underscoring its importance and the fact that Ehmtl can-
not fully compensate for its loss [14]. Conditional knock-
outs of Ehmt2 also demonstrated its importance in germ
cell development [15], heart development [16], lympho-
cyte development [17, 18], leukemia [19], drug addiction
[20], cognition, and adaptive behaviors [21, 22]. H3K9me2
appears to occur on repressed genes in euchromatin,
whereas H3K9me3 is also a repressive mark, but
associated with pericentromeric heterochromatin [23].
The repressive function is led by recruitment of proteins
such as HP1, which bind preferentially to H3K9me2 and
establish a repressive chromatin conformation [15]. The
SET domain in Ehmt2 and other histone methyltransfer-
ases also have the potential to methylate non-histone
polypeptides [24, 25], allowing possible regulation of the
localization and activity of a variety on non-histone pro-
teins [26]. Ehmt2 contains an ankyrin domain, enabling
protein—protein interactions [27] with a variety of partners
including DNA methyltransferases (DNMT) [28], which
provide an alternative mechanism for gene repression
[29]. Finally, Ehmt2 can act as a gene activator in addition
to its repressive roles, by interacting with coactivators
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such as in nuclear receptor-mediated transcription regula-
tion [23, 30].

Despite Ehmt2 being capable of regulating a diverse
range of cellular and biological functions, little is known
about its role in skeletal muscle. Working with the
widely used murine cell line C2C12, Ling et al. [31]
recently highlighted Ehmt2 as a possible regulator of
myogenic differentiation. Using in vitro overexpression
and knockdown strategies, Ehmt2 was shown to act as
an inhibitor of myotube formation. Biochemical analyses
suggested that EHMT?2 also has the capability to directly
methylate MYOD at K104 [31], revealing a novel
Bhlhe41/Sharpl-dependent mechanism inhibiting myo-
genesis that is controlled by Ehmt2 through both direct
modulation of MYOD and the repressive H3K9me2
modification of Myod target genes [32, 33]. In spite of
these initial findings, whether Ehmt2 plays an equivalent
role in a more complex biological system such as in vivo
skeletal muscle development or regeneration is yet to be
evaluated. In this study, we generated transgenic mouse
strains to genetically delete Elmt2 during muscle devel-
opment as well as in adult satellite cells. We found that
proliferation and differentiation of satellite cells was not
influenced by the absence of Ehmt2. Knocking out
Ehmt2 also failed to result in significant consequences
for skeletal muscle development and in adult muscle
regeneration in vivo. Thus, Ehmt2 is completely dispens-
able for the normal functioning, maintenance, and dam-
age response of murine skeletal muscle.

Methods

Mice and animal care

C57BL/6 mice harboring the Ehmt2"*? allele were pre-
viously generated by Lehnertz et al. [17]. In this strain,
Cre-mediated targeting of the Ehmt2™*? allele results
in a genomic deletion from exon 4 to exon 20 and a
frameshift mutation that places the downstream coding
sequence out of frame. All other transgenic strains used
herein were generated by other groups [34—36] and ob-
tained from The Jackson Laboratory. Inducible Cre re-
combinase was activated by intraperitoneal injection of
tamoxifen dissolved in corn oil (250 mg/kg of body
weight per day) for 5 consecutive days, followed by
7 days without any treatment to allow sufficient
activation. The mice were housed in a pathogen-free
facility, and all experiments were performed according
to the Canadian Council on Animal Care (CCAC)
regulations.

Acute muscle injury

The tibialis anterior (TA) muscle of 8—12-week-old con-
trol or experimental mice was injected with the myo-
toxin notexin (7 pl), as previously described [37].
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Flow cytometry/FACS
Skeletal muscle tissue was prepared as described previ-
ously [37]. Cell preparations were then incubated with
primary antibodies for 30 min at 4 °C in supplemented
PBS containing 2 mM EDTA and 2 % fetal bovine serum
at ~3 x 10 [7] cells per milliliter. We used the following
monoclonal-conjugated primary antibodies: anti-platelet
endothelial cell adhesion molecule (PECAM)-1 (CD31)
(clones MEC13.3, Becton Dickinson, and 390, Cedarlane
Laboratories); anti-protein tyrosine phosphatase receptor
type C (PTPRC) (CD45) (clone 30-F11, Becton Dickinson);
anti-lymphocyte antigen 6A/E (LY6A/E) (Sca-1) (clone D7,
eBioscience); anti-vascular cell adhesion molecule (VCAM)
(produced in-house); and anti-integrin alpha-7 (produced
in-house). Satellite cells were identified as PECAM-,
PTPRC-, LY6A/E-, VCAM+, and integrin alpha-7+.
Antibody dilution and staining volume were determined
experimentally. Where necessary, biotinylated primary
antibodies were detected using streptavidin coupled to
phycoerythrin (PE), allophycocyanin (APC), phycoerythrin-
cyanine 7 tandem complex (PE-Cy7), or fluorescein iso-
thiocyanate (FITC) (Caltag). To assess viability, cells were
stained with propidium iodide (1 pg/ml) and Hoechst
33342 (2.5 pg/ml) and resuspended at ~1 x 10 cells/ml [7]
immediately before flow cytometry analysis or sorting.
Analysis was performed on LSRII (Becton Dickinson)
equipped with three lasers. Data were collected using
FACSDiva software. Sorts were performed on a FACS
Influx (Becton Dickinson) or FACSAria (Becton Dickinson),
both equipped with three lasers, using a 100-pm nozzle at
18 psi to minimize the effects of pressure on the cells.
Sorting gates were strictly defined based on “fluorescence
minus one” stains.

Cell culture and immunocytochemistry

Viable single myofibers were isolated from the extensor
digitorum longus (EDL) muscle of 6-8-week-old mice
following dissociation with collagenase I as previously
described [38]. Myofibers and their associated satellite
cells were maintained ex vivo for up to 72 h in high-
glucose Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 20 % v/v FBS, 0.5 % v/v chick em-
bryo extract, and pen-strep. Following culture, single
myofibers were fixed in 4 % PFA and then stained over-
night with the following primary antibodies: mouse anti-
Pax7 (Developmental Studies Hybridoma Bank (DSHB)),
mouse anti-MyoD (Dako, clone 5.8A), mouse anti-
Myogenin (DSHB, clone FD5).

Fluorescence-activated cell sorting (FACS)-sorted cells
were grown in high-glucose DMEM, supplemented with
2.5 ng/ml bFGF (Invitrogen) 20 % v/v FBS, and 10 % v/v
horse serum. This medium is hereafter referred to as
“growth medium.” Cells were seeded in tissue culture-
treated plastics coated with Matrigel (BD Biosciences).

Page 3 of 10

The media were changed every 24-48 h. To induce
myogenic differentiation, confluent myoblasts were cul-
tured in DMEM supplemented with 5 % horse serum for
up to 96 h, before being fixed in 4 % PFA and stained
overnight with mouse anti-Myosin (DSHB, clone MF20).

Histology

TA muscles were dissected from mice, fixed in 4 % para-
formaldehyde overnight followed by 70 % ethanol over-
night, and then embedded in paraffin following standard
protocols. Tissues were cut with a microtome in a cross-
sectional orientation through the entire length of the
muscle. Cross sections of 5 mm thickness were then
mounted onto glass slides (Thermo Fisher Scientific,
USA) and stained with Masson’s trichrome or Picrosirius
red following standard protocols. The cross-sectional
area was used as a measure of myofiber size, which was
produced by semi-automated measurements on stitched
whole-section images (Nikon).

Gene deletion efficiency measured by allele count

At least 10,000 FACS-purified satellite cells per sample
were used for measuring the efficiency of Ehmt2 condi-
tional knockouts. Cells were lysed and purified for genomic
DNA, of which 50 ng per sample was mixed with digital
droplet PCR supermix (Bio-Rad) and two TagMan Copy
Number Assays for a duplex (fluorescein amidite (FAM)
and VIC) digital droplet PCR assay. The “functional assay”
is a TagMan Copy Number Assay with FAM dye (Thermo
Fisher Scientific #4400291 Mm00466045_cn) that detects
Ehmt2 in a region from intron 14 to exon 15, which is
found only in the wildtype or floxed alleles (functional
alleles) of the gene. The “reference assay” is a TagMan
Copy Number Assay with VIC dye (Thermo Fisher
Scientific #4400291 Mm00466690_cn) that detects Ehmit2
in a region from intron 25 to intron 26, which is found in
any null, wildtype, or floxed alleles of the gene. Droplets of
the mixture were generated according to standard digital
droplet PCR protocol (Bio-Rad) and ran in a thermocycler
for 40 PCR cycles. PCR products were read droplet-wise in
duplex (FAM and VIC) following standard protocol (Bio-
Rad), and a signal ratio was calculated by dividing the
absolute copy number of the functional assay to the copy
number of the reference assay. The signal ratio was then
used to interpolate the functional allele frequency (%) from
a known standard curve (see Additional file 1: Figure S1).
The standard curve of signal ratios was produced by per-
forming digital droplet polymerase chain reaction (ddPCR)
using genomic DNA that were mixed at known propor-
tions from Ehmt2""™" and Ehmt2™""™"" mouse embryonic
fibroblasts. The standard curve has a Pearson coefficient of
0.993, and a statistical test of linearity yielded a p value of
0.0001. The results of this measurement are presented
either as the frequency of functional alleles in each
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experimental sample or as the efficiency of gene deletion,
which is calculated as the reciprocal of the functional allele
frequency.

Statistics

Mouse weight measurements plotted against age were
subjected to linear regression analysis. A sum-of-squares
F test was performed on a shared model to test the null
hypothesis that one curve fits all groups. The result-
ing p value was used to conclude the differences in
growth pattern between the groups. Error for mean of
means is propagated by weighted pooled variance.

Results

Ehmt2 (G9a) is dispensable in skeletal muscle
development

To examine the role of Eimt2 in myogenesis in vivo, we
first established a transgenic mouse model in which the
Ehmt2 gene was conditionally knocked out in the
skeletal muscle lineage. Mice harboring loxP-flanked
Ehmt2 alleles (Ehmt2"°*°?) were crossed to mice with a
Cre recombinase gene knocked in to the Myod locus
(Myod“™) [34]. To verify the efficiency of the conditional
knockout, we performed an exon-specific allele-counting
assay using digital droplet PCR to measure functional
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allele frequency [19] (see the “Methods” section for de-
tails). In FACS-purified satellite cells from control mice
(Myod™"™"* Ehmt2loxedlfioxed) +he Ehmt2 functional allele
frequency was 100 %; whereas in the knockout mice
(Myod‘"/ Cre. Eppgofloxedlfloxedy " the functional allele fre-
quency was reduced to 2.9-7.9 % (95 % CI) (Fig. 1a).
These genomic results were consistent with immuno-
staining quantification of EHMT2 protein in satellite
cells. In wildtype mice, EHMT2 was robustly expressed
in activated satellite cells whereas no detectable staining
was present in the knockout mice (Fig. 1c). Furthermore,
western blot analysis of whole skeletal muscle lysates
from the conditional knockout mice showed reduction of
H3K9me2 levels compared to those of the wildtype
(Fig. 1b), congruent with previous reports that H3K9me2
is diminished in Ehme2"/"! models [14].

Knockout and control group progenies from Myod“™
and Ehmt2"*? breeding were born at expected Mendelian
frequencies (Fig. 1d), and neonatal weights were similar
between both groups (Fig. 1e). Growth patterns of knock-
out and control group progenies were charted by body
weight, which showed no statistically significant differ-
ences (Fig. 1f). Mature skeletal muscles in these mice are
of similar size (Fig. 1g) and showed no difference upon
histological examination, which included a comparison of
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myofiber size by measuring the cross-sectional area of
myofibers (Fig. 1h, i). These findings indicate that Ehmit2
in the skeletal muscle lineage is dispensable in embryonic
and fetal development.

Ehmt2 (G9a) knockout satellite cells have normal
proliferation kinetics and differentiation capacity in vitro
As previous reports have suggested that Ehmt2 is an
important regulator of C2C12 myogenesis, we next assessed
whether it plays a similar role in satellite cell and primary
myoblast cultures ex vivo. To analyze satellite cell prolifera-
tion, we performed a 4-h 5-ethynyl-2'-deoxyuridine (EAU)
pulse on myofiber-associated satellite cells from the wild-
type and conditional knockout mice after 72 h in culture.
No differences in EdU incorporation were detected
between the control and knockout groups (Fig. 2a, e).
Similarly, quantification of immunofluorescent staining
showed similar numbers of PAX7+ (Fig. 2c) and MYOD+
(Fig. 2b) satellite cells after 72 h in culture. These results
indicate that satellite cells lacking Eimt2 show compar-
able rates of proliferation and myogenic activation to
wild-type cells ex vivo.

Next, we assessed the requirement of Ehmt2 for satel-
lite cells to undergo myogenic differentiation. Satellite
cell-derived myofibers from wildtype (WT) and knock-
out (KO) mice were expanded to confluence, induced to
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differentiate, and then analyzed by immunostaining of
MYOG and myosin heavy chain after 4, 24, and 48 h.
Under differentiating conditions, MYOG-expressing cells
increased, but no significant differences in the percentages
of cells expressing MYOG were observed between control
and KO myoblasts (Fig. 2e). Similarly, we found no signifi-
cant differences in myogenic fusion index (ratio of fused
nuclei found in myosin-expressing cells to total nuclei)
following 48 h of differentiation (Fig. 2f), providing further
support that deletion of Ehmt2 does not have significant
effects on the progress or timing of myogenic differenti-
ation in primary myoblasts.

Together, these data provide little evidence that Ehmt2
plays a major role in the regulation of satellite cell prolif-
eration or myogenic differentiation in vitro.

Skeletal muscle- and satellite cell-specific deletion of
Ehmt2 (G9a) has little effect on muscle regeneration

in vivo

Before evaluating the requirement of Eimt2 in the re-
sponse of skeletal muscle to acute injury in vivo, we first
analyzed the expression of the gene in our injury model
in WT mice, which involved an intramuscular injection
of notexin (a snake venom toxin) in the TA muscle.
During the ensuing regenerative process, we performed
transcriptome sequencing of WT primary myoblasts at
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different timepoints; in our results, neither Ehmt2 nor
Ehmtl showed any dynamic changes in expression dur-
ing the process, in contrast to key myogenic regulators
(Additional file 1: Figure S2).

Then, we evaluated the aforementioned Myod“"™
Ehmt2oxedlfloxed model, which deletes Emt2 in all skel-
etal muscles and satellite cells during their development
[39]. Following injury, we quantified the cross-sectional
area of centrally nucleated myofibers as a measure of re-
generation [40]. Despite a trend toward an increased
number of the largest fibers in KO samples, no statistically
significant difference was found between the control and
KO mice in the distribution of myofiber size at 7, 14, or
21 days post injury, indicating comparable regenerative
capacities (Fig. 3b, Additional file 1: Figure S3).

Mpyod-driven CRE leads to target deletion early in
development and could therefore trigger compensatory
effects that mask the regulatory role of Ehmt2 in adult
regenerative myogenesis. To mitigate this risk, we
performed a satellite cell-specific, inducible EAmt2 KO
using a strain carrying the tamoxifen-activated CreERT2
recombinase knocked in to the Pax7 locus [35]. This
allowed us to confine the gene deletion within adult sat-
ellite cells and to use a Rosa26"" reporter to monitor
the efficiency of induction. One week after the end of
tamoxifen treatment, we found that the YFP reporter
was activated in 70 % of cells in the satellite cell popula-
tion (Additional file 1: Figure S4). Since this was not a
definitive measure of gene deletion, we further per-
formed Ehmt2 allele count and found that the functional
allele frequency had been reduced to 27.2 + 4.2 % (SEM)
in the satellite cell population purified by FACS.

Acute muscle injury by notexin was performed at
7 days after the final CreERT2 induction on mice har-
boring Pax7" %% and Ehmt2™*4™ ! glleles. At 7, 14,
and 21 days after the injury, no significant differences in
myofiber size distribution were observed between the
control and KO groups (Fig. 3f, Additional file 1: Figure
S5, data not shown), suggesting that lack of Ehmt2 in
adult satellite cells does not significantly affect repair
and regeneration in vivo.

Together, our data provide little evidence for a role of
Ehmt2 in regulating skeletal muscle development,
homeostasis, or regeneration in vivo.

Discussion

In this study, we provide a comprehensive assessment of
the biological consequences of G9a deletion in skeletal
muscle progenitors. Our data strongly suggests that
Ehmt2 is dispensable for both developmental and re-
generative myogenesis in vivo and is not required for
normal satellite cell proliferation and myogenic differ-
entiation in vitro.
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Although germ line deletion of Ehmt2 is embryonically
lethal, conditional KO models suggest that Ehmt2 plays
distinct roles in different tissues. Studies have shown an
involvement of Emht2 in the regulation of embryogen-
esis [14, 28, 41], cardiac morphogenesis [16], lymphopoi-
esis [17, 18], myelopoiesis [19], germ cell development
[15], brain and cognitive development [21, 22], and drug
addiction [20], confirming Ehmt2 is capable of control-
ling a diverse range of biological processes. In the case
of myogenesis, we showed that conditional loss of Ehmt2
in vivo does not induce any significant developmental
impact or any significant alterations to the regenerative
capacity of myogenic progenitors in response to skeletal
muscle injury. Deletion of Eimt2 in primary myoblasts
also fails to induce any significant alterations in prolifer-
ative kinetics or differentiation capacity in vitro, suggest-
ing little role for Ehmt2 in regulating myogenesis.

These results are surprising given the previous reports
suggesting an important role for Ehmt2 in negatively
regulating myogenic differentiation of C2C12 cells, an
immortalized myogenic line. In particular, it was demon-
strated that siRNA knockdown of Ehmt2 led to en-
hanced and/or premature differentiation of C2C12
myoblasts [31]. It was further reported that Ehmt2 is an
integral component of the mechanism with which
Bhlhe41/Sharpl regulates in myogenesis, in that it is re-
cruited by SUMOylated BHLHE41/SHARP1 [33], meth-
ylates MYOD at lysine 104 [31], and leads to repressive
H3K9me2 modifications on Myod targets [32]. These
results were not consistent with observations in the
current study when examining the differentiation cap-
acity of primary myoblasts lacking Ehmt2, which showed
no premature differentiation, no alterations in myogenic
fusion, and normal proliferation. This discrepancy in
findings could stem from the fundamental differences
between the biological models being analyzed; unlike
C2C12 cells, which were derived from a different strain
of mouse (C3H) [42], immortalized [43], and have a
much shorter doubling time [44], the primary myoblasts
in our study were not serially passaged and were ana-
lyzed in their myofiber niche during proliferation and on
Matrigel during differentiation, in addition to in vivo
analyses. These differences may be particularly relevant
in the case of Ehmt2, as we have recently reported, in
another tissue system, that its absence has drastically
different effects on transformed compared to natural
hematopoietic cells [19].

To date, no genome-wide analysis of the Ehmt2-medi-
ated H3K9me2 in myogenic cells exists. Dynamic
changes in H3K9me2 have been reported at specific
gene bodies and regulatory regions [45, 46], suggesting
that modulating this epigenetic mark may affect gene
transcription. However, in our experiments, lack of
Ehmt2 led to a dramatic drop in the global levels of
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muscle of induced adult Pax7“"*7? fhmtofloxed/loxed

Fig. 3 £hmt2 is dispensable for muscle regeneration. a Schematic diagram of leg injury timeline for Myod™® Enmt2" ¢ mice. b, ¢ Masson's
trichrome stain of histological sections of the tibialis anterior muscle of adult Myod™'® Ehme27°¢1°%¢d mjice at 21 days after injury and myofiber
size measurement by cross-sectional area, respectively. d Schematic diagram of leg injury timeline for Pax7*™2 Ehmt2™¢ ™ mice. @ Ehmt2
deletion efficiency by Pax7“"°"'? as measured by functional allele frequency in FACS-purified satellite cells. Analysis by gDNA allele counting using
ddPCR, n > 3. f, g Myofiber size measurement by cross-sectional area and Masson’s trichrome stain of histological sections of the tibialis anterior
mice at 21 days after injury, respectively

detectable H3K9me2 in the absence of any effects on
skeletal muscle development. This indicates that Ehmt2
activity is mostly non-redundant and questions the im-
portance of Ehmt2-mediated histone modifications in
myogenesis in particular and in the control of differenti-
ation in general.

What remains unclear is the status of EHMT2-
mediated methylation of MYOD at lysine 104 [31] in the
in vivo model. Ling et al. reported the identification of
this residue by mass spectrometry of peptides resulting
from the digestion of MYOD with trypsin [31]. However,
the reported MYOD peptides, ACKACKRKTT and its
methylated forms, do not appear to be obtainable by
trypsin digestion alone or by any commonly used diges-
tion method. The reported MYOD peptide is also not
found in the tandem mass spectrometry proteomics
repository PeptideAtlas (https://db.systemsbiology.net/
sbeams/cgi/shortURL?key=1mk36ybs). More intriguingly,
the proposed mechanism [31] was based on liquid chro-
matography—mass spectrometry (LC-MS) results, showing
that the different methylation states of the MYOD peptide
are separated by only 1 m/z unit each. Methylation adds
14 Da to the peptide mass; thus, each peptide would have
to carry 14 charges on 10 residues. The LC-MS results
could not possibly correspond to methylation of the re-
ported MYOD peptide. The uncertainty of MYOD methy-
lation, together with the dispensability of Enmt2-mediated
H3K9me?2 in vivo, casts doubts on the proposed role of
Ehmt2 in Bhlhe41/Sharpl-mediated regulation of myo-
genesis [32]. Nevertheless, SUMOylated Bhlhe41/Sharpl
[33] may still regulate Myod and downstream targets
through an alternative mechanism.

Although we have shown here that the loss of EHMT2’s
histone methylation function in our model was not com-
pensated, the possibility exists that its potential interaction
with myogenic regulators could be compensated by an-
other gene, such as its close homologue Ehmtl (GLP).
These two genes are highly similar in structure, as their
protein products contain highly similar catalytic domains
for lysine methylation (SET domain) and a set of ankyrin
repeats for protein—protein interaction. These two en-
zymes are known to form heterodimers [14] but also play
unique roles depending on the cell type and developmen-
tal stage [47]. Using domain-specific mutations, the
EHMT]1 but not the EHMT?2 ankyrin repeats were found
to be required for mouse viability [48], suggesting that this

domain function in EHMT2 could be compensated by
EHMT]I. On the other hand, the SET domain in EHMT1
is dispensable for mouse viability [16], suggesting EHMT2
could compensate for EHMT1’s methyltransferase activity.
In our Ehmt2 KO cells, even though the histone methyl-
transferase activity, a function shared by both pro-
teins, is not compensated by EHMT], its ankyrin repeat-
dependent protein—protein interactions may be compen-
sated. Both proteins have been reported to methylate a
number of non-histone targets beyond MYOD [49, 50],
and it is unknown if EHMT1 could replace EHMT?2 in
binding and methylating these targets. Interestingly, such
compensation by Ehmtl was not observed in C2C12
studies [31], and in our transcriptome data, neither of the
genes showed any dynamic changes during regeneration.
Nevertheless, to fully address this concern, a conditional
double KO of Ehmt2 and Ehmtl in myogenesis would be
required.

Conclusions

In this study, we analyzed tissue-specific KO models of
Ehmt2 both during development and in adult satellite
cells, and unlike as previously reported, we found no evi-
dence for a significant role of this methyltransferase in
the development or regeneration of skeletal muscle. The
drop in H3K9me2 levels observed in cells lacking Ehmt2
strongly suggests that this histone modification is
dispensable for the regulation of myogenesis. Primary
cultures revealed that Ehmt2 does not significantly alter
the proliferation and differentiation processes of satellite
cells. Thus, the proposed regulatory role of Ehmt2 in
myogenesis cannot be validated in vivo.
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