Emery AE: The muscular dystrophies. Lancet 2002, 359: 687-695. 10.1016/S0140-6736(02)07815-7
CAS
PubMed
Google Scholar
Blake DJ, Weir A, Newey SE, Davies KE: Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiological reviews 2002, 82: 291-329.
CAS
PubMed
Google Scholar
Mauro A: Satellite cells of skeletal fibers. J Biophys Biochem Cytol 1961, 9: 493-495. 10.1083/jcb.9.2.493
PubMed Central
CAS
PubMed
Google Scholar
Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W, Andrade FH: A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 2002, 11: 263-272. 10.1093/hmg/11.3.263
CAS
PubMed
Google Scholar
Muir LA, Chamberlain JS: Emerging strategies for cell and gene therapy of the muscular dystrophies. Expert Rev Mol Med 2009, 11: e18.
PubMed
Google Scholar
Angelini C: The role of corticosteroids in muscular dystrophy: a critical appraisal. Muscle Nerve 2007, 36: 424-435. 10.1002/mus.20812
CAS
PubMed
Google Scholar
Snijders T, Verdijk LB, van Loon LJ: The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res Rev 2009, 8: 328-338. 10.1016/j.arr.2009.05.003
PubMed
Google Scholar
Ryall JG, Schertzer JD, Lynch GS: Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 2008, 9: 213-228. 10.1007/s10522-008-9131-0
CAS
PubMed
Google Scholar
Friedrich O, Both M, Weber C, Schurmann S, Teichmann MD, von Wegner F, Fink RH, Vogel M, Chamberlain JS, Garbe C: Microarchitecture is severely compromised but motor protein function is preserved in dystrophic mdx skeletal muscle. Biophys J 2010, 98: 606-616. 10.1016/j.bpj.2009.11.005
PubMed Central
CAS
PubMed
Google Scholar
Grounds MD, Sorokin L, White J: Strength at the extracellular matrix-muscle interface. Scand J Med Sci Sports 2005, 15: 381-391. 10.1111/j.1600-0838.2005.00467.x
CAS
PubMed
Google Scholar
Kaariainen M, Jarvinen T, Jarvinen M, Rantanen J, Kalimo H: Relation between myofibers and connective tissue during muscle injury repair. Scand J Med Sci Sports 2000, 10: 332-337. 10.1034/j.1600-0838.2000.010006332.x
CAS
PubMed
Google Scholar
Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol 2008, 214: 199-210. 10.1002/path.2277
PubMed Central
CAS
PubMed
Google Scholar
Chazaud B, Brigitte M, Yacoub-Youssef H, Arnold L, Gherardi R, Sonnet C, Lafuste P, Chretien F: Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exerc Sport Sci Rev 2009, 37: 18-22. 10.1097/JES.0b013e318190ebdb
PubMed
Google Scholar
Tidball JG, Villalta SA: Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 2010, 298: R1173-1187. 10.1152/ajpregu.00735.2009
PubMed Central
CAS
PubMed
Google Scholar
Lluri G, Langlois GD, McClellan B, Soloway PD, Jaworski DM: Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates neuromuscular junction development via a beta1 integrin-mediated mechanism. J Neurobiol 2006, 66: 1365-1377. 10.1002/neu.20315
PubMed Central
CAS
PubMed
Google Scholar
Chen X, Li Y: Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adh Migr 2009, 3: 337-341. 10.4161/cam.3.4.9338
PubMed Central
PubMed
Google Scholar
Tidball JG: Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 2005, 288: R345-353.
CAS
PubMed
Google Scholar
Serrano AL, Munoz-Canoves P: Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res 2010, 316: 3050-3058. 10.1016/j.yexcr.2010.05.035
CAS
PubMed
Google Scholar
Segawa M, Fukada S, Yamamoto Y, Yahagi H, Kanematsu M, Sato M, Ito T, Uezumi A, Hayashi S, Miyagoe-Suzuki Y, et al.: Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp Cell Res 2008, 314: 3232-3244. 10.1016/j.yexcr.2008.08.008
CAS
PubMed
Google Scholar
Green DR, Ferguson T, Zitvogel L, Kroemer G: Immunogenic and tolerogenic cell death. Nat Rev Immunol 2009, 9: 353-363. 10.1038/nri2545
PubMed Central
CAS
PubMed
Google Scholar
Brigitte M, Schilte C, Plonquet A, Baba-Amer Y, Henri A, Charlier C, Tajbakhsh S, Albert M, Gherardi RK, Chretien F: Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum 2010, 62: 268-279. 10.1002/art.27183
CAS
PubMed
Google Scholar
Nahirney PC, Dow PR, Ovalle WK: Quantitative morphology of mast cells in skeletal muscle of normal and genetically dystrophic mice. Anat Rec 1997, 247: 341-349. 10.1002/(SICI)1097-0185(199703)247:3<341::AID-AR5>3.0.CO;2-X
CAS
PubMed
Google Scholar
Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007, 204: 1057-1069. 10.1084/jem.20070075
PubMed Central
CAS
PubMed
Google Scholar
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25: 677-686. 10.1016/j.it.2004.09.015
CAS
PubMed
Google Scholar
Wynn TA, Barron L: Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010, 30: 245-257. 10.1055/s-0030-1255354
PubMed Central
CAS
PubMed
Google Scholar
Wynn TA: Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 2004, 4: 583-594. 10.1038/nri1412
PubMed Central
CAS
PubMed
Google Scholar
Vidal B, Serrano AL, Tjwa M, Suelves M, Ardite E, De Mori R, Baeza-Raja B, Martinez de Lagran M, Lafuste P, Ruiz-Bonilla V, et al.: Fibrinogen drives dystrophic muscle fibrosis via a TGFbeta/alternative macrophage activation pathway. Genes & development 2008, 22: 1747-1752. 10.1101/gad.465908
CAS
Google Scholar
Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG: Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 2009, 18: 482-496.
PubMed Central
CAS
PubMed
Google Scholar
Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG: Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet 2011, 20: 790-805. 10.1093/hmg/ddq523
PubMed Central
CAS
PubMed
Google Scholar
Yogo Y, Fujishima S, Inoue T, Saito F, Shiomi T, Yamaguchi K, Ishizaka A: Macrophage derived chemokine (CCL22), thymus and activation-regulated chemokine (CCL17), and CCR4 in idiopathic pulmonary fibrosis. Respir Res 2009, 10: 80. 10.1186/1465-9921-10-80
PubMed Central
PubMed
Google Scholar
Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, Thompson RW, Cheever AW, Murray PJ, Wynn TA: Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog 2009, 5: e1000371. 10.1371/journal.ppat.1000371
PubMed Central
PubMed
Google Scholar
Sun D, Martinez CO, Ochoa O, Ruiz-Willhite L, Bonilla JR, Centonze VE, Waite LL, Michalek JE, McManus LM, Shireman PK: Bone marrow-derived cell regulation of skeletal muscle regeneration. FASEB J 2009, 23: 382-395.
PubMed Central
CAS
PubMed
Google Scholar
Lluis F, Roma J, Suelves M, Parra M, Aniorte G, Gallardo E, Illa I, Rodriguez L, Hughes SM, Carmeliet P, et al.: Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood 2001, 97: 1703-1711. 10.1182/blood.V97.6.1703
CAS
PubMed
Google Scholar
Martinez CO, McHale MJ, Wells JT, Ochoa O, Michalek JE, McManus LM, Shireman PK: Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment. Am J Physiol Regul Integr Comp Physiol 2010, 299: R832-842. 10.1152/ajpregu.00797.2009
PubMed Central
CAS
PubMed
Google Scholar
Suelves M, Lopez-Alemany R, Lluis F, Aniorte G, Serrano E, Parra M, Carmeliet P, Munoz-Canoves P: Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood 2002, 99: 2835-2844. 10.1182/blood.V99.8.2835
CAS
PubMed
Google Scholar
Suelves M, Vidal B, Ruiz V, Baeza-Raja B, Diaz-Ramos A, Cuartas I, Lluis F, Parra M, Jardi M, Lopez-Alemany R, et al.: The plasminogen activation system in skeletal muscle regeneration: antagonistic roles of urokinase-type plasminogen activator (uPA) and its inhibitor (PAI-1). Front Biosci 2005, 10: 2978-2985. 10.2741/1754
CAS
PubMed
Google Scholar
Suelves M, Vidal B, Serrano AL, Tjwa M, Roma J, Lopez-Alemany R, Luttun A, de Lagran MM, Diaz-Ramos A, Jardi M, et al.: uPA deficiency exacerbates muscular dystrophy in MDX mice. J Cell Biol 2007, 178: 1039-1051. 10.1083/jcb.200705127
PubMed Central
CAS
PubMed
Google Scholar
Wehling M, Spencer MJ, Tidball JG: A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 2001, 155: 123-131. 10.1083/jcb.200105110
PubMed Central
CAS
PubMed
Google Scholar
Pelosi L, Giacinti C, Nardis C, Borsellino G, Rizzuto E, Nicoletti C, Wannenes F, Battistini L, Rosenthal N, Molinaro M, Musaro A: Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. Faseb J 2007, 21: 1393-1402. 10.1096/fj.06-7690com
CAS
PubMed
Google Scholar
Peterson JM, Guttridge DC: Skeletal muscle diseases, inflammation, and NF-kappaB signaling: insights and opportunities for therapeutic intervention. Int Rev Immunol 2008, 27: 375-387. 10.1080/08830180802302389
CAS
PubMed
Google Scholar
Radley HG, Davies MJ, Grounds MD: Reduced muscle necrosis and long-term benefits in dystrophic mdx mice after cV1q (blockade of TNF) treatment. Neuromuscul Disord 2008, 18: 227-238. 10.1016/j.nmd.2007.11.002
PubMed
Google Scholar
Desguerre I, Christov C, Mayer M, Zeller R, Becane HM, Bastuji-Garin S, Leturcq F, Chiron C, Chelly J, Gherardi RK: Clinical heterogeneity of duchenne muscular dystrophy (DMD): definition of sub-phenotypes and predictive criteria by long-term follow-up. PLoS One 2009, 4: e4347. 10.1371/journal.pone.0004347
PubMed Central
PubMed
Google Scholar
Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG, Rosenthal N, Nerlov C: A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci USA 2009, 106: 17475-17480. 10.1073/pnas.0908641106
PubMed Central
CAS
PubMed
Google Scholar
Di Marco S, Mazroui R, Dallaire P, Chittur S, Tenenbaum SA, Radzioch D, Marette A, Gallouzi IE: NF-kappa B-mediated MyoD decay during muscle wasting requires nitric oxide synthase mRNA stabilization, HuR protein, and nitric oxide release. Mol Cell Biol 2005, 25: 6533-6545. 10.1128/MCB.25.15.6533-6545.2005
PubMed Central
CAS
PubMed
Google Scholar
Evangeliou A, Vasilaki K, Karagianni P, Nikolaidis N: Clinical applications of creatine supplementation on paediatrics. Curr Pharm Biotechnol 2009, 10: 683-690. 10.2174/138920109789542075
CAS
PubMed
Google Scholar
Loell I, Lundberg IE: Can muscle regeneration fail in chronic inflammation: a weakness in inflammatory myopathies? J Int Med 2011.
Google Scholar
Schakman O, Gilson H, Kalista S, Thissen JP: Mechanisms of muscle atrophy induced by glucocorticoids. Horm Res 2009,72(Suppl 1):36-41.
CAS
PubMed
Google Scholar
Bondesen BA, Mills ST, Kegley KM, Pavlath GK: The COX-2 pathway is essential during early stages of skeletal muscle regeneration. Am J Physiol Cell Physiol 2004, 287: C475-483. 10.1152/ajpcell.00088.2004
CAS
PubMed
Google Scholar
Shen W, Li Y, Zhu J, Schwendener R, Huard J: Interaction between macrophages, TGFbeta1, and the COX-2 pathway during the inflammatory phase of skeletal muscle healing after injury. J Cell Physiol 2008, 214: 405-412. 10.1002/jcp.21212
CAS
PubMed
Google Scholar
Loell I, Helmers SB, Dastmalchi M, Alexanderson H, Munters LA, Nennesmo I, Lindroos E, Borg K, Lundberg IE, Esbjornsson M: Higher proportion of fast-twitch (type II) muscle fibres in idiopathic inflammatory myopathies - evident in chronic but not in untreated newly diagnosed patients. Clin Physiol Funct Imaging 2011, 31: 18-25. 10.1111/j.1475-097X.2010.00973.x
CAS
PubMed
Google Scholar
Farini A, Meregalli M, Belicchi M, Battistelli M, Parolini D, D'Antona G, Gavina M, Ottoboni L, Constantin G, Bottinelli R, Torrente Y: T and B lymphocyte depletion has a marked effect on the fibrosis of dystrophic skeletal muscles in the scid/mdx mouse. J Pathol 2007, 213: 229-238. 10.1002/path.2213
CAS
PubMed
Google Scholar
Morrison J, Lu QL, Pastoret C, Partridge T, Bou-Gharios G: T-cell-dependent fibrosis in the mdx dystrophic mouse. Lab Invest 2000, 80: 881-891.
CAS
PubMed
Google Scholar
Vetrone SA, Montecino-Rodriguez E, Kudryashova E, Kramerova I, Hoffman EP, Liu SD, Miceli MC, Spencer MJ: Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGFbeta. J Clin Invest 2009, 119: 1583-1594. 10.1172/JCI37662
PubMed Central
CAS
PubMed
Google Scholar
Morrison J, Palmer DB, Cobbold S, Partridge T, Bou-Gharios G: Effects of T-lymphocyte depletion on muscle fibrosis in the mdx mouse. Am J Pathol 2005, 166: 1701-1710. 10.1016/S0002-9440(10)62480-7
PubMed Central
CAS
PubMed
Google Scholar
Spencer MJ, Montecino-Rodriguez E, Dorshkind K, Tidball JG: Helper (CD4(+)) and cytotoxic (CD8(+)) T cells promote the pathology of dystrophin-deficient muscle. Clin Immunol 2001, 98: 235-243. 10.1006/clim.2000.4966
CAS
PubMed
Google Scholar
Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G: The myofibroblast: one function, multiple origins. Am J Pathol 2007, 170: 1807-1816. 10.2353/ajpath.2007.070112
PubMed Central
CAS
PubMed
Google Scholar
Mathew SJ, Hansen JM, Merrell AJ, Murphy MM, Lawson JA, Hutcheson DA, Hansen MS, Angus-Hill M, Kardon G: Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 2011, 138: 371-384. 10.1242/dev.057463
PubMed Central
CAS
PubMed
Google Scholar
Alexakis C, Partridge T, Bou-Gharios G: Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction. Am J Physiol Cell Physiol 2007, 293: C661-669. 10.1152/ajpcell.00061.2007
CAS
PubMed
Google Scholar
Haus JM, Carrithers JA, Carroll CC, Tesch PA, Trappe TA: Contractile and connective tissue protein content of human skeletal muscle: effects of 35 and 90 days of simulated microgravity and exercise countermeasures. Am J Physiol Regul Integr Comp Physiol 2007, 293: R1722-1727. 10.1152/ajpregu.00292.2007
CAS
PubMed
Google Scholar
Cencetti F, Bernacchioni C, Nincheri P, Donati C, Bruni P: Transforming growth factor-beta1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis. Molecular biology of the cell 2010, 21: 1111-1124. 10.1091/mbc.E09-09-0812
PubMed Central
CAS
PubMed
Google Scholar
Ono Y, Sensui H, Okutsu S, Nagatomi R: Notch2 negatively regulates myofibroblastic differentiation of myoblasts. J Cell Physiol 2007, 210: 358-369. 10.1002/jcp.20838
CAS
PubMed
Google Scholar
Carlson ME, Hsu M, Conboy IM: Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 2008, 454: 528-532. 10.1038/nature07034
CAS
PubMed
Google Scholar
Carlson J, Cui W, Zhang Q, Xu X, Mercan F, Bennett AM, Vignery A: Role of MKP-1 in osteoclasts and bone homeostasis. Am J Pathol 2009, 175: 1564-1573. 10.2353/ajpath.2009.090035
PubMed Central
CAS
PubMed
Google Scholar
Brack AS, Murphy-Seiler F, Hanifi J, Deka J, Eyckerman S, Keller C, Aguet M, Rando TA: BCL9 is an essential component of canonical Wnt signaling that mediates the differentiation of myogenic progenitors during muscle regeneration. Dev Biol 2009, 335: 93-105. 10.1016/j.ydbio.2009.08.014
PubMed Central
CAS
PubMed
Google Scholar
Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA: Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 2007, 317: 807-810. 10.1126/science.1144090
CAS
PubMed
Google Scholar
Natarajan A, Lemos DR, Rossi FM: Fibro/adipogenic progenitors: A double-edged sword in skeletal muscle regeneration. Cell Cycle 2010., 9:
Google Scholar
Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM: Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 2010, 12: 153-163. 10.1038/ncb2015
PubMed Central
CAS
PubMed
Google Scholar
Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K: Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 2010, 12: 143-152. 10.1038/ncb2014
CAS
PubMed
Google Scholar
Arsic N, Zacchigna S, Zentilin L, Ramirez-Correa G, Pattarini L, Salvi A, Sinagra G, Giacca M: Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther 2004, 10: 844-854. 10.1016/j.ymthe.2004.08.007
CAS
PubMed
Google Scholar
Zhou L, Porter JD, Cheng G, Gong B, Hatala DA, Merriam AP, Zhou X, Rafael JA, Kaminski HJ: Temporal and spatial mRNA expression patterns of TGFbeta1, 2, 3 and TbetaRI, II, III in skeletal muscles of mdx mice. Neuromuscul Disord 2006, 16: 32-38. 10.1016/j.nmd.2005.09.009
PubMed
Google Scholar
Bonniaud P, Margetts PJ, Ask K, Flanders K, Gauldie J, Kolb M: TGFbeta and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol 2005, 175: 5390-5395.
CAS
PubMed
Google Scholar
Shi Y, Massague J: Mechanisms of TGFbeta signaling from cell membrane to the nucleus. Cell 2003, 113: 685-700. 10.1016/S0092-8674(03)00432-X
CAS
PubMed
Google Scholar
Brandan E, Cabello-Verrugio C, Vial C: Novel regulatory mechanisms for the proteoglycans decorin and biglycan during muscle formation and muscular dystrophy. Matrix Biol 2008, 27: 700-708. 10.1016/j.matbio.2008.07.004
CAS
PubMed
Google Scholar
Zhu J, Li Y, Shen W, Qiao C, Ambrosio F, Lavasani M, Nozaki M, Branca MF, Huard J: Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J Biol Chem 2007, 282: 25852-25863. 10.1074/jbc.M704146200
CAS
PubMed
Google Scholar
Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J: Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 2004, 164: 1007-1019. 10.1016/S0002-9440(10)63188-4
PubMed Central
CAS
PubMed
Google Scholar
Li Y, Li J, Zhu J, Sun B, Branca M, Tang Y, Foster W, Xiao X, Huard J: Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol Ther 2007, 15: 1616-1622. 10.1038/sj.mt.6300250
CAS
PubMed
Google Scholar
Heydemann A, Ceco E, Lim JE, Hadhazy M, Ryder P, Moran JL, Beier DR, Palmer AA, McNally EM: Latent TGFbeta-binding protein 4 modifies muscular dystrophy in mice. J Clin Invest 2009, 119: 3703-3712. 10.1172/JCI39845
PubMed Central
CAS
PubMed
Google Scholar
Beggs ML, Nagarajan R, Taylor-Jones JM, Nolen G, Macnicol M, Peterson CA: Alterations in the TGFbeta signaling pathway in myogenic progenitors with age. Aging Cell 2004, 3: 353-361. 10.1111/j.1474-9728.2004.00135.x
CAS
PubMed
Google Scholar
Andreetta F, Bernasconi P, Baggi F, Ferro P, Oliva L, Arnoldi E, Cornelio F, Mantegazza R, Confalonieri P: Immunomodulation of TGFbeta 1 in mdx mouse inhibits connective tissue proliferation in diaphragm but increases inflammatory response: implications for antifibrotic therapy. J Neuroimmunol 2006, 175: 77-86. 10.1016/j.jneuroim.2006.03.005
CAS
PubMed
Google Scholar
Bedair HS, Karthikeyan T, Quintero A, Li Y, Huard J: Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am J Sports Med 2008, 36: 1548-1554. 10.1177/0363546508315470
PubMed
Google Scholar
Cohn RD, van Erp C, Habashi JP, Soleimani AA, Klein EC, Lisi MT, Gamradt M, ap Rhys CM, Holm TM, Loeys BL, et al.: Angiotensin II type 1 receptor blockade attenuates TGFbeta-induced failure of muscle regeneration in multiple myopathic states. Nature medicine 2007, 13: 204-210. 10.1038/nm1536
PubMed Central
CAS
PubMed
Google Scholar
Chan YS, Li Y, Foster W, Horaguchi T, Somogyi G, Fu FH, Huard J: Antifibrotic effects of suramin in injured skeletal muscle after laceration. J Appl Physiol 2003, 95: 771-780.
CAS
PubMed
Google Scholar
Roffe S, Hagai Y, Pines M, Halevy O: Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: effect on myotube fusion. Exp Cell Res 2010, 316: 1061-1069. 10.1016/j.yexcr.2010.01.003
CAS
PubMed
Google Scholar
Huebner KD, Jassal DS, Halevy O, Pines M, Anderson JE: Functional resolution of fibrosis in mdx mouse dystrophic heart and skeletal muscle by halofuginone. Am J Physiol Heart Circ Physiol 2008, 294: H1550-1561. 10.1152/ajpheart.01253.2007
CAS
PubMed
Google Scholar
Sun G, Haginoya K, Wu Y, Chiba Y, Nakanishi T, Onuma A, Sato Y, Takigawa M, Iinuma K, Tsuchiya S: Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy. J Neurol Sci 2008, 267: 48-56. 10.1016/j.jns.2007.09.043
CAS
PubMed
Google Scholar
Vial C, Zuniga LM, Cabello-Verrugio C, Canon P, Fadic R, Brandan E: Skeletal muscle cells express the profibrotic cytokine connective tissue growth factor (CTGF/CCN2), which induces their dedifferentiation. J Cell Physiol 2008, 215: 410-421. 10.1002/jcp.21324
CAS
PubMed
Google Scholar
Frazier K, Williams S, Kothapalli D, Klapper H, Grotendorst GR: Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 1996, 107: 404-411. 10.1111/1523-1747.ep12363389
CAS
PubMed
Google Scholar
Bonner JC: Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 2004, 15: 255-273. 10.1016/j.cytogfr.2004.03.006
CAS
PubMed
Google Scholar
Plattner R, Kadlec L, DeMali KA, Kazlauskas A, Pendergast AM: c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes & development 1999, 13: 2400-2411. 10.1101/gad.13.18.2400
CAS
Google Scholar
Gordon J, Spiera R: Imatinib and the treatment of fibrosis: recent trials and tribulations. Curr Rheumatol Rep 2011, 13: 51-58. 10.1007/s11926-010-0146-6
CAS
PubMed
Google Scholar
Huang P, Zhao XS, Fields M, Ransohoff RM, Zhou L: Imatinib attenuates skeletal muscle dystrophy in mdx mice. FASEB J 2009, 23: 2539-2548. 10.1096/fj.09-129833
PubMed Central
CAS
PubMed
Google Scholar
Bizario JC, Cerri DG, Rodrigues LC, Oliveira GL, Nomizo A, de Araujo DD, Fukuhara PS, Ribeiro JC, de Castro FA, Costa MC: Imatinib mesylate ameliorates the dystrophic phenotype in exercised mdx mice. J Neuroimmunol 2009, 212: 93-101. 10.1016/j.jneuroim.2009.05.006
CAS
PubMed
Google Scholar
Glass DJ: Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care 2010, 13: 225-229. 10.1097/MCO.0b013e32833862df
CAS
PubMed
Google Scholar
Kollias HD, McDermott JC: Transforming growth factor-beta and myostatin signaling in skeletal muscle. J Appl Physiol 2008, 104: 579-587.
CAS
PubMed
Google Scholar
Rodino-Klapac LR, Haidet AM, Kota J, Handy C, Kaspar BK, Mendell JR: Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 2009, 39: 283-296. 10.1002/mus.21244
PubMed Central
CAS
PubMed
Google Scholar
Li ZB, Kollias HD, Wagner KR: Myostatin directly regulates skeletal muscle fibrosis. J Biol Chem 2008, 283: 19371-19378. 10.1074/jbc.M802585200
PubMed Central
CAS
PubMed
Google Scholar
Wagner KR, McPherron AC, Winik N, Lee SJ: Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 2002, 52: 832-836. 10.1002/ana.10385
CAS
PubMed
Google Scholar
McCroskery S, Thomas M, Platt L, Hennebry A, Nishimura T, McLeay L, Sharma M, Kambadur R: Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. Journal of cell science 2005, 118: 3531-3541. 10.1242/jcs.02482
CAS
PubMed
Google Scholar
Philip B, Lu Z, Gao Y: Regulation of GDF-8 signaling by the p38 MAPK. Cell Signal 2005, 17: 365-375. 10.1016/j.cellsig.2004.08.003
CAS
PubMed
Google Scholar
Casar JC, McKechnie BA, Fallon JR, Young MF, Brandan E: Transient up-regulation of biglycan during skeletal muscle regeneration: delayed fiber growth along with decorin increase in biglycan-deficient mice. Dev Biol 2004, 268: 358-371. 10.1016/j.ydbio.2003.12.025
CAS
PubMed
Google Scholar
Zanotti S, Negri T, Cappelletti C, Bernasconi P, Canioni E, Di Blasi C, Pegoraro E, Angelini C, Ciscato P, Prelle A, et al.: Decorin and biglycan expression is differentially altered in several muscular dystrophies. Brain 2005, 128: 2546-2555. 10.1093/brain/awh635
PubMed
Google Scholar
Cornelison DD: Context matters: in vivo and in vitro influences on muscle satellite cell activity. J Cell Biochem 2008, 105: 663-669. 10.1002/jcb.21892
PubMed Central
CAS
PubMed
Google Scholar
Durbeej M, Campbell KP: Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev 2002, 12: 349-361. 10.1016/S0959-437X(02)00309-X
CAS
PubMed
Google Scholar
Nagamine Y, Medcalf RL, Munoz-Canoves P: Transcriptional and posttranscriptional regulation of the plasminogen activator system. Thromb Haemost 2005, 93: 661-675.
CAS
PubMed
Google Scholar
Ohtake Y, Tojo H, Seiki M: Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. Journal of cell science 2006, 119: 3822-3832. 10.1242/jcs.03158
CAS
PubMed
Google Scholar
Visse R, Nagase H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003, 92: 827-839. 10.1161/01.RES.0000070112.80711.3D
CAS
PubMed
Google Scholar
Kaar JL, Li Y, Blair HC, Asche G, Koepsel RR, Huard J, Russell AJ: Matrix metalloproteinase-1 treatment of muscle fibrosis. Acta Biomater 2008, 4: 1411-1420. 10.1016/j.actbio.2008.03.010
CAS
PubMed
Google Scholar
Wu N, Jansen ED, Davidson JM: Comparison of mouse matrix metalloproteinase 13 expression in free-electron laser and scalpel incisions during wound healing. J Invest Dermatol 2003, 121: 926-932. 10.1046/j.1523-1747.2003.12497.x
CAS
PubMed
Google Scholar
Filippin LI, Cuevas MJ, Lima E, Marroni NP, Gonzalez-Gallego J, Xavier RM: The role of nitric oxide during healing of trauma to the skeletal muscle. Inflamm Res 2011,60(4):347-56. Epub 2010 Nov 13 10.1007/s00011-010-0277-2
CAS
PubMed
Google Scholar
Filippin LI, Cuevas MJ, Lima E, Marroni NP, Gonzalez-Gallego J, Xavier RM: Nitric oxide regulates the repair of injured skeletal muscle. Nitric Oxide 2011, 24: 43-49. 10.1016/j.niox.2010.11.003
CAS
PubMed
Google Scholar
Fukushima K, Nakamura A, Ueda H, Yuasa K, Yoshida K, Takeda S, Ikeda S: Activation and localization of matrix metalloproteinase-2 and -9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ). BMC Musculoskelet Disord 2007, 8: 54. 10.1186/1471-2474-8-54
PubMed Central
PubMed
Google Scholar
Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier J-G, Verdiere-Sahuque M, Fardeau M, Alameddine HS: Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. DevBiol 1999, 205: 158-170.
CAS
Google Scholar
Li H, Mittal A, Makonchuk DY, Bhatnagar S, Kumar A: Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy. Hum Mol Genet 2009, 18: 2584-2598. 10.1093/hmg/ddp191
PubMed Central
CAS
PubMed
Google Scholar
Gargioli C, Coletta M, De Grandis F, Cannata SM, Cossu G: PlGF-MMP-9-expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nature medicine 2008, 14: 973-978. 10.1038/nm.1852
CAS
PubMed
Google Scholar
Jorgensen LH, Jensen CH, Wewer UM, Schroder HD: Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice. Am J Pathol 2007, 171: 1599-1607. 10.2353/ajpath.2007.070435
PubMed Central
PubMed
Google Scholar
Kafadar KA, Yi L, Ahmad Y, So L, Rossi F, Pavlath GK: Sca-1 expression is required for efficient remodeling of the extracellular matrix during skeletal muscle regeneration. Dev Biol 2009, 326: 47-59. 10.1016/j.ydbio.2008.10.036
PubMed Central
CAS
PubMed
Google Scholar
Long KK, Pavlath GK, Montano M: Sca-1 influences the innate immune response during skeletal muscle regeneration. Am J Physiol Cell Physiol 2011, 300: C287-294. 10.1152/ajpcell.00319.2010
PubMed Central
CAS
PubMed
Google Scholar
Ito CY, Li CY, Bernstein A, Dick JE, Stanford WL: Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 2003, 101: 517-523. 10.1182/blood-2002-06-1918
CAS
PubMed
Google Scholar
Markiewski MM, Mastellos D, Tudoran R, DeAngelis RA, Strey CW, Franchini S, Wetsel RA, Erdei A, Lambris JD: C3a and C3b activation products of the third component of complement (C3) are critical for normal liver recovery after toxic injury. J Immunol 2004, 173: 747-754.
CAS
PubMed
Google Scholar
Hidestrand M, Richards-Malcolm S, Gurley CM, Nolen G, Grimes B, Waterstrat A, Zant GV, Peterson CA: Sca-1-expressing nonmyogenic cells contribute to fibrosis in aged skeletal muscle. J Gerontol A Biol Sci Med Sci 2008, 63: 566-579.
PubMed Central
PubMed
Google Scholar
Trensz F, Haroun S, Cloutier A, Richter MV, Grenier G: A muscle resident cell population promotes fibrosis in hindlimb skeletal muscles of mdx mice through the Wnt canonical pathway. Am J Physiol Cell Physiol 2010, 299: C939-947. 10.1152/ajpcell.00253.2010
CAS
PubMed
Google Scholar
Negishi S, Li Y, Usas A, Fu FH, Huard J: The effect of relaxin treatment on skeletal muscle injuries. Am J Sports Med 2005, 33: 1816-1824. 10.1177/0363546505278701
PubMed
Google Scholar
Mu X, Urso ML, Murray K, Fu F, Li Y: Relaxin regulates MMP expression and promotes satellite cell mobilization during muscle healing in both young and aged mice. Am J Pathol 2010, 177: 2399-2410. 10.2353/ajpath.2010.091121
PubMed Central
CAS
PubMed
Google Scholar
Fibbi G, Barletta E, Dini G, Del Rosso A, Pucci M, Cerletti M, Del Rosso M: Cell invasion is affected by differential expression of the urokinase plasminogen activator/urokinase plasminogen activator receptor system in muscle satellite cells from normal and dystrophic patients. Lab Invest 2001, 81: 27-39.
CAS
PubMed
Google Scholar
Lahoute C, Sotiropoulos A, Favier M, Guillet-Deniau I, Charvet C, Ferry A, Butler-Browne G, Metzger D, Tuil D, Daegelen D: Premature aging in skeletal muscle lacking serum response factor. PLoS One 2008, 3: e3910. 10.1371/journal.pone.0003910
PubMed Central
PubMed
Google Scholar
Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, Rasmussen BB: Aging and MicroRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 2010, in press.
Google Scholar
Thalacker-Mercer AE, Dell'Italia LJ, Cui X, Cross JM, Bamman MM: Differential genomic responses in old vs. young humans despite similar levels of modest muscle damage after resistance loading. Physiol Genomics 2010, 40: 141-149. 10.1152/physiolgenomics.00151.2009
PubMed Central
CAS
PubMed
Google Scholar
Trenerry MK, Carey KA, Ward AC, Farnfield MM, Cameron-Smith D: Exercise-induced activation of STAT3 signaling is increased with age. Rejuvenation Res 2008, 11: 717-724. 10.1089/rej.2007.0643
CAS
PubMed
Google Scholar
Horsley V, Jansen KM, Mills ST, Pavlath GK: IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 2003, 113: 483-494. 10.1016/S0092-8674(03)00319-2
CAS
PubMed
Google Scholar