Skip to main content

Articles

Page 1 of 9

  1. Muscle wasting is a universal hallmark of aging which is displayed by a wide range of organisms, although the causes and mechanisms of this phenomenon are not fully understood. We used Drosophila to characterize ...

    Authors: Maria Chechenova, Lilla McLendon, Bracey Dallas, Hannah Stratton, Kaveh Kiani, Erik Gerberich, Alesia Alekseyenko, Natasya Tamba, SooBin An, Lizzet Castillo, Emily Czajkowski, Christina Talley, Austin Brown and Anton L. Bryantsev
    Citation: Skeletal Muscle 2024 14:20
  2. Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by gene mutations resulting in deficiency of the membrane-associated protein dysferlin. They manifest post-growth and are c...

    Authors: Erin M. Lloyd, Rachael C. Crew, Vanessa R. Haynes, Robert B. White, Peter J. Mark, Connie Jackaman, John M. Papadimitriou, Gavin J. Pinniger, Robyn M. Murphy, Matthew J. Watt and Miranda D. Grounds
    Citation: Skeletal Muscle 2024 14:19
  3. Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration, leading to neuromuscular junction (NMJ) dismantling and severe muscle atrophy. The nuclear receptor interacti...

    Authors: Hsin-Hsiung Chen, Hsin-Tung Yeo, Yun-Hsin Huang, Li-Kai Tsai, Hsing-Jung Lai, Yeou-Ping Tsao and Show-Li Chen
    Citation: Skeletal Muscle 2024 14:17
  4. This study aims to investigate the involvement of acid sphingomyelinase (ASM) in the pathology of dermatomyositis (DM), making it a potential therapeutic target for DM.

    Authors: Yuehong Chen, Huan Liu, Zhongling Luo, Jiaqian Zhang, Min Dong, Geng Yin and Qibing Xie
    Citation: Skeletal Muscle 2024 14:16
  5. TCF4 acts as a transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5 motif. Dominant variants in TCF4 are associated with the manifestation of Pitt-Hopkins syndrome, a rare disease characterize...

    Authors: Celine Chiu, Alma Küchler, Christel Depienne, Corinna Preuße, Adela Della Marina, Andre Reis, Frank J. Kaiser, Kay Nolte, Andreas Hentschel, Ulrike Schara-Schmidt, Heike Kölbel and Andreas Roos
    Citation: Skeletal Muscle 2024 14:15
  6. Adult muscle-resident myogenic stem cells, satellite cells (SCs), that play non-redundant role in muscle regeneration, are intrinsically impaired in Duchenne muscular dystrophy (DMD). Previously we revealed th...

    Authors: Urszula Florczyk-Soluch, Katarzyna Polak, Sarka Jelinkova, Iwona Bronisz-Budzyńska, Reece Sabo, Subhashini Bolisetty, Anupam Agarwal, Ewa Werner, Alicja Józkowicz, Jacek Stępniewski, Krzysztof Szade and Józef Dulak
    Citation: Skeletal Muscle 2024 14:13
  7. Intramuscular fat (IMAT) infiltration, pathological adipose tissue that accumulates between muscle fibers, is a shared hallmark in a diverse set of diseases including muscular dystrophies and diabetes, spinal ...

    Authors: Alessandra M. Norris, Kiara E. Fierman, Jillian Campbell, Rhea Pitale, Muhammad Shahraj and Daniel Kopinke
    Citation: Skeletal Muscle 2024 14:12
  8. Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse...

    Authors: Denis Falcetta, Sandrine Quirim, Ilaria Cocchiararo, Florent Chabry, Marine Théodore, Adeline Stiefvater, Shuo Lin, Lionel Tintignac, Robert Ivanek, Jochen Kinter, Markus A. Rüegg, Michael Sinnreich and Perrine Castets
    Citation: Skeletal Muscle 2024 14:11
  9. Loss-of-function mutations in MEGF10 lead to a rare and understudied neuromuscular disorder known as MEGF10-related myopathy. There are no treatments for the progressive respiratory distress, motor impairment, an...

    Authors: Devin Juros, Mary Flordelys Avila, Robert Louis Hastings, Ariane Pendragon, Liam Wilson, Jeremy Kay and Gregorio Valdez
    Citation: Skeletal Muscle 2024 14:10
  10. Duchenne muscular dystrophy (DMD) is associated with impaired muscle regeneration, progressive muscle weakness, damage, and wasting. While the cause of DMD is an X-linked loss of function mutation in the gene ...

    Authors: Emily Freeman, Stéphanie Langlois, Marcos F. Leyba, Tarek Ammar, Zacharie Léger, Hugh J. McMillan, Jean-Marc Renaud, Bernard J. Jasmin and Kyle N. Cowan
    Citation: Skeletal Muscle 2024 14:8
  11. Muscle atrophy is a common consequence of the loss of innervation and is accompanied by mitochondrial dysfunction. Mitophagy is the adaptive process through which damaged mitochondria are removed via the lysos...

    Authors: Ashley N. Oliveira, Jonathan M. Memme, Jenna Wong and David A. Hood
    Citation: Skeletal Muscle 2024 14:7
  12. The regenerative and adaptive capacity of skeletal muscles reduces with age, leading to severe disability and frailty in the elderly. Therefore, development of effective therapeutic interventions for muscle wa...

    Authors: Yoshiyuki Takahashi, Masaki Yoda, Osahiko Tsuji, Keisuke Horiuchi, Kota Watanabe and Masaya Nakamura
    Citation: Skeletal Muscle 2024 14:6
  13. Neurovascular cells have wide-ranging implications on skeletal muscle biology regulating myogenesis, maturation, and regeneration. Although several in vitro studies have investigated how motor neurons and endo...

    Authors: Suradip Das, Melanie C. Hilman, Feikun Yang, Foteini Mourkioti, Wenli Yang and D. Kacy Cullen
    Citation: Skeletal Muscle 2024 14:5
  14. Untargeted metabolomics can be used to expand our understanding of the pathogenesis of sarcopenia. However, the metabolic signatures of sarcopenia patients have not been thoroughly investigated. Herein, we exp...

    Authors: Peipei Han, Chunhua Yuan, Xiaoyu Chen, Yuanqing Hu, Xiaodan Hu, Zhangtao Xu and Qi Guo
    Citation: Skeletal Muscle 2024 14:4
  15. Human iPSC-derived 3D-tissue-engineered-skeletal muscles (3D-TESMs) offer advanced technology for disease modelling. However, due to the inherent genetic heterogeneity among human individuals, it is often diff...

    Authors: Stijn L. M. in ‘t Groen, Marnix Franken, Theresa Bock, Marcus Krüger, Jessica C. de Greef and W. W. M. Pim Pijnappel
    Citation: Skeletal Muscle 2024 14:3
  16. Multiple clinical trials to assess the efficacy of AAV-directed gene transfer in participants with Duchenne muscular dystrophy (DMD) are ongoing. The success of these trials currently relies on standard functi...

    Authors: Jessica F. Boehler, Kristy J. Brown, Valeria Ricotti and Carl A. Morris
    Citation: Skeletal Muscle 2024 14:2
  17. Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at ...

    Authors: Diego Jaime, Lauren A. Fish, Laura A. Madigan, Chengjie Xi, Giorgia Piccoli, Madison D. Ewing, Bert Blaauw and Justin R. Fallon
    Citation: Skeletal Muscle 2024 14:1
  18. Cross-sectional studies have demonstrated the association of skeletal muscle mass with metabolic-associated fatty liver disease (MAFLD), while longitudinal data are scarce. We aimed to explore the impact of ch...

    Authors: Ting Zhou, Junzhao Ye, Ling Luo, Wei Wang, Shiting Feng, Zhi Dong, Shuyu Zhuo and Bihui Zhong
    Citation: Skeletal Muscle 2023 13:23
  19. We investigated the effect of eldecalcitol on disuse muscle atrophy. C57BL/6J male mice aged 6 weeks were randomly assigned to control, tail suspension (TS), and TS-eldecalcitol–treated groups and were injecte...

    Authors: Haichao Zhang, Yanping Du, Wenjing Tang, Minmin Chen, Weijia Yu, Zheng Ke, Shuangshuang Dong and Qun Cheng
    Citation: Skeletal Muscle 2023 13:22
  20. Hypoxia is known to modify skeletal muscle biological functions and muscle regeneration. However, the mechanisms underlying the effects of hypoxia on human myoblast differentiation remain unclear. The hypoxic ...

    Authors: Thuy-Hang Nguyen, Lise Paprzycki, Alexandre Legrand, Anne-Emilie Declèves, Philipp Heher, Maelle Limpens, Alexandra Belayew, Christopher R. S. Banerji, Peter S. Zammit and Alexandra Tassin
    Citation: Skeletal Muscle 2023 13:21
  21. Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in DMD gene and loss of the protein dystrophin, which ultimately leads to myofiber membrane fragility and necrosis, with eventual muscl...

    Authors: Déborah Cardoso, Inès Barthélémy, Stéphane Blot and Antoine Muchir
    Citation: Skeletal Muscle 2023 13:20
  22. The lack of functional dystrophin protein in Duchenne muscular dystrophy (DMD) causes chronic skeletal muscle inflammation and degeneration. Therefore, the restoration of functional dystrophin levels is a fund...

    Authors: Tetsuaki Hiyoshi, Fuqiang Zhao, Rina Baba, Takeshi Hirakawa, Ryosuke Kuboki, Kazunori Suzuki, Yoshiro Tomimatsu, Patricio O’Donnell, Steve Han, Neta Zach and Masato Nakashima
    Citation: Skeletal Muscle 2023 13:19
  23. While ageing is associated with increased insulin resistance (IR), the molecular mechanisms underlying increased IR in the muscle, the primary organ for glucose clearance, have yet to be elucidated in older in...

    Authors: Mark A. Burton, Emma S. Garratt, Matthew O. Hewitt, Hanan Y. Sharkh, Elie Antoun, Leo D. Westbury, Elaine M. Dennison, Nicholas C. Harvey, Cyrus Cooper, Julia L. MacIsaac, Michael S. Kobor, Harnish P. Patel, Keith M. Godfrey and Karen A. Lillycrop
    Citation: Skeletal Muscle 2023 13:17
  24. Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy without an effective treatment, caused by mutations in the DMD gene, leading to the absence of dystrophin. DMD results in muscle weakness, ...

    Authors: Marcelo dos Santos Voltani Lorena, Estela Kato dos Santos, Renato Ferretti, G. A. Nagana Gowda, Guy L. Odom, Jeffrey S. Chamberlain and Cintia Yuri Matsumura
    Citation: Skeletal Muscle 2023 13:16
  25. Transcription factors (TFs) play key roles in regulating differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regenera...

    Authors: Stephanie N. Oprescu, Nick Baumann, Xiyue Chen, Qiang Sun, Yu Zhao, Feng Yue, Huating Wang and Shihuan Kuang
    Citation: Skeletal Muscle 2023 13:15
  26. Histological analysis of skeletal muscle is of major interest for understanding its behavior in different pathophysiological conditions, such as the response to different environments or myopathies. In this co...

    Authors: Anne Danckaert, Aurélie Trignol, Guillaume Le Loher, Sébastien Loubens, Bart Staels, Hélène Duez, Spencer L. Shorte and Alicia Mayeuf-Louchart
    Citation: Skeletal Muscle 2023 13:14
  27. The occurrence of hyperplasia, through myofibre splitting, remains a widely debated phenomenon. Structural alterations and fibre typing of skeletal muscle fibres, as seen during regeneration and in certain mus...

    Authors: Grith Højfeldt, Trent Sorenson, Alana Gonzales, Michael Kjaer, Jesper L. Andersen and Abigail L. Mackey
    Citation: Skeletal Muscle 2023 13:13
  28. Critical illness is hallmarked by severe stress and organ damage. Fibroblast growth factor 21 (FGF21) has been shown to rise during critical illness. FGF21 is a pleiotropic hormone that mediates adaptive respo...

    Authors: Wouter Vankrunkelsven, Steven Thiessen, Sarah Derde, Ellen Vervoort, Inge Derese, Isabel Pintelon, Hanne Matheussen, Alexander Jans, Chloë Goossens, Lies Langouche, Greet Van den Berghe and Ilse Vanhorebeek
    Citation: Skeletal Muscle 2023 13:12
  29. As a result of aging, skeletal muscle undergoes atrophy and a decrease in function. This age-related skeletal muscle weakness is known as “sarcopenia”. Sarcopenia is part of the frailty observed in humans. In ...

    Authors: Tea Shavlakadze, Kun Xiong, Shawn Mishra, Corissa McEwen, Abhilash Gadi, Matthew Wakai, Hunter Salmon, Michael J. Stec, Nicole Negron, Min Ni, Yi Wei, Gurinder S. Atwal, Yu Bai and David J. Glass
    Citation: Skeletal Muscle 2023 13:11
  30. Limb-girdle muscular dystrophy R8 (LGMD R8) is a rare autosomal recessive muscle disease caused by TRIM32 gene biallelic defects. The genotype–phenotype correlation of this disease has been reported poorly. He...

    Authors: Yuqing Guan, Xiongda Liang, Wei Li, Wanying Lin, Guanxia Liang, Hongting Xie, Yu Hou, Yafang Hu and Xuan Shang
    Citation: Skeletal Muscle 2023 13:10
  31. Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, a cytoskeletal protein essential for the preservation of the structural integrity of the muscle cell membrane. DMD patients develop severe...

    Authors: Dongwoo Hahn, Joseph D. Quick, Brian R. Thompson, Adelyn Crabtree, Benjamin J. Hackel, Frank S. Bates and Joseph M. Metzger
    Citation: Skeletal Muscle 2023 13:9
  32. The functional and metabolic properties of skeletal muscles are partly a function of the spatial arrangement of fibers across the muscle belly. Many muscles feature a non-uniform spatial pattern of fiber types...

    Authors: Anna K. Redmond, Tilman M. Davies, Matthew R. Schofield and Philip W. Sheard
    Citation: Skeletal Muscle 2023 13:7
  33. Skeletal muscle (SkM) is a large, secretory organ that produces and releases myokines that can have autocrine, paracrine, and endocrine effects. Whether extracellular vesicles (EVs) also play a role in the SkM...

    Authors: Ahmed Ismaeel, Douglas W. Van Pelt, Zachary R. Hettinger, Xu Fu, Christopher I. Richards, Timothy A. Butterfield, Jonathan J. Petrocelli, Ivan J. Vechetti, Amy L. Confides, Micah J. Drummond and Esther E. Dupont-Versteegden
    Citation: Skeletal Muscle 2023 13:6
  34.  We have previously demonstrated that double homeobox 4 centromeric (DUX4C) encoded for a functional DUX4c protein upregulated in dystrophic skeletal muscles. Based on gain- and loss-of-function studies we have p...

    Authors: Clothilde Claus, Moriya Slavin, Eugénie Ansseau, Céline Lancelot, Karimatou Bah, Saskia Lassche, Manon Fiévet, Anna Greco, Sara Tomaiuolo, Alexandra Tassin, Virginie Dudome, Benno Kusters, Anne-Emilie Declèves, Dalila Laoudj-Chenivesse, Baziel G. M. van Engelen, Denis Nonclercq…
    Citation: Skeletal Muscle 2023 13:5
  35. The body muscle is an important tissue used in organisms for proper viability and locomotion. Although this tissue is generally well studied and characterized, and many pathways have been elucidated throughout...

    Authors: Anna L. Schorr, Alejandro Felix Mejia, Martina Y. Miranda and Marco Mangone
    Citation: Skeletal Muscle 2023 13:4
  36. Sarcopenia is one of the most predominant musculoskeletal diseases of the elderly, defined as age-related progressive and generalized loss of muscle mass with a simultaneous reduction in muscle strength and/or...

    Authors: Jair Marques, Engy Shokry, Olaf Uhl, Lisa Baber, Fabian Hofmeister, Stefanie Jarmusch, Martin Bidlingmaier, Uta Ferrari, Berthold Koletzko and Michael Drey
    Citation: Skeletal Muscle 2023 13:2
  37. The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabi...

    Authors: Jackie L. McCourt, Kristen M. Stearns-Reider, Hafsa Mamsa, Pranav Kannan, Mohammad Hossein Afsharinia, Cynthia Shu, Elizabeth M. Gibbs, Kara M. Shin, Yerbol Z. Kurmangaliyev, Lauren R. Schmitt, Kirk C. Hansen and Rachelle H. Crosbie
    Citation: Skeletal Muscle 2023 13:1
  38. Sarcopenia is defined as age-related low muscle mass and function, and can also describe the loss of muscle mass in certain medical conditions, such as sarcopenic obesity. Sarcopenic obesity describes loss of ...

    Authors: Dana J. Murdock, Ning Wu, Joseph S. Grimsby, Roberto A. Calle, Stephen Donahue, David J. Glass, Mark W. Sleeman and Robert J. Sanchez
    Citation: Skeletal Muscle 2022 12:26
  39. Limb-girdle muscular dystrophy (MD) type 2B (LGMD2B) and Duchenne MD (DMD) are caused by mutations to the Dysferlin and Dystrophin genes, respectively. We have recently demonstrated in typically mild dysferlin...

    Authors: Zoe White, Zeren Sun, Elodie Sauge, Dan Cox, Graham Donen, Dmitri Pechkovsky, Volker Straub, Gordon A. Francis and Pascal Bernatchez
    Citation: Skeletal Muscle 2022 12:25
  40. Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by a complete lack of dystrophin, which stabilizes the plasma membrane of myofibers. The orofacial function is affected in an advanced sta...

    Authors: Keitaro Yamanouchi, Yukie Tanaka, Masanari Ikeda, Shizuka Kato, Ryosuke Okino, Hiroki Nishi, Fumihiko Hakuno, Shin-Ichiro Takahashi, James Chambers, Takashi Matsuwaki and Kazuyuki Uchida
    Citation: Skeletal Muscle 2022 12:24
  41. Choline kinase beta (CHKB) catalyzes the first step in the de novo biosynthesis of phosphatidyl choline and phosphatidylethanolamine via the Kennedy pathway. Derangement of this pathway might also influence th...

    Authors: Francesca Magri, Sara Antognozzi, Michela Ripolone, Simona Zanotti, Laura Napoli, Patrizia Ciscato, Daniele Velardo, Giulietta Scuvera, Valeria Nicotra, Antonella Giacobbe, Donatella Milani, Francesco Fortunato, Manuela Garbellini, Monica Sciacco, Stefania Corti, Giacomo Pietro Comi…
    Citation: Skeletal Muscle 2022 12:23
  42. In intensive care units (ICU), mechanical ventilation (MV) is commonly applied to save patients’ lives. However, ventilator-induced diaphragm dysfunction (VIDD) can complicate treatment by hindering weaning in...

    Authors: Dong Zhang, Wenyan Hao, Qi Niu, Dongdong Xu and Xuejiao Duan
    Citation: Skeletal Muscle 2022 12:21
  43. The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and musc...

    Authors: A. Rasim Barutcu, Gabriel Elizalde, Alfredo E. Gonzalez, Kartik Soni, John L. Rinn, Amy J. Wagers and Albert E. Almada
    Citation: Skeletal Muscle 2022 12:20

Annual Journal Metrics

  • Citation Impact 2023
    Journal Impact Factor: 5.3
    5-year Journal Impact Factor: 5.0
    Source Normalized Impact per Paper (SNIP): 1.140
    SCImago Journal Rank (SJR): 1.856

    Speed 2023
    Submission to first editorial decision (median days): 8
    Submission to acceptance (median days): 149

    Usage 2023
    Downloads: 483,918
    Altmetric mentions: 338