Curtis BM, Catterall WA: Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry. 1984, 23: 2113-2118. 10.1021/bi00305a001.
CAS
PubMed
Google Scholar
Fosset M, Jaimovich E, Delpont E, Lazdunski M: [3H]nitrendipine receptors in skeletal muscle. J Biol Chem. 1983, 258: 6086-6092.
CAS
PubMed
Google Scholar
Inui M, Saito A, Fleischer S: Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem. 1987, 262: 15637-15642.
CAS
PubMed
Google Scholar
MacLennan DH, Wong PT: Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci USA. 1971, 68: 1231-1235. 10.1073/pnas.68.6.1231.
PubMed Central
CAS
PubMed
Google Scholar
Chen SR, Zhang L, MacLennan DH: Asymmetrical blockade of the Ca2+ release channel (ryanodine receptor) by 12-kDa FK506 binding protein. Proc Natl Acad Sci USA. 1994, 91: 11953-11957. 10.1073/pnas.91.25.11953.
PubMed Central
CAS
PubMed
Google Scholar
Tripathy A, Xu L, Mann G, Meissner G: Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys J. 1995, 69: 106-119. 10.1016/S0006-3495(95)79880-0.
PubMed Central
CAS
PubMed
Google Scholar
MacLennan DH, Brandl CJ, Korczak B, Green NM: Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985, 316: 696-700. 10.1038/316696a0.
CAS
PubMed
Google Scholar
Fill M, Copello JA: Ryanodine receptor calcium release channels. Physiol Rev. 2002, 82: 893-922.
CAS
PubMed
Google Scholar
Krolenko SA, Amos WB, Brown SC, Tarunina MV, Lucy JA: Accessibility of T-tubule vacuoles to extracellular dextran and DNA: mechanism and potential application of vacuolation. J Muscle Res Cell Motil. 1998, 19: 603-611. 10.1023/A:1005320929284.
CAS
PubMed
Google Scholar
Krolenko SA, Lucy JA: Reversible vacuolation of T-tubules in skeletal muscle: mechanisms and implications for cell biology. Int Rev Cytol. 2001, 202: 243-298.
CAS
PubMed
Google Scholar
Krolenko SA, Adamian S: [Stereologic analysis of vacuolization of the T-system of frog muscle fibers, detected using confocal fluorescence microscopy]. Tsitologiia. 2000, 42: 1125-1133.
CAS
PubMed
Google Scholar
Krolenko SA, Lucy JA: Vacuolation in T-tubules as a model for tubular-vesicular transformations in biomembrane systems. Cell Biol Int. 2002, 26: 893-904. 10.1006/cbir.2002.0945.
CAS
PubMed
Google Scholar
Lannergren J, Bruton JD, Westerblad H: Vacuole formation in fatigued single muscle fibres from frog and mouse. J Muscle Res Cell Motil. 1999, 20: 19-32. 10.1023/A:1005412216794.
CAS
PubMed
Google Scholar
Kilarski W, Jakubowska M: An electron microscope study of myofibril formation in embryonic rabbit skeletal muscle. Z Mikrosk Anat Forsch. 1979, 93: 1159-1181.
CAS
PubMed
Google Scholar
Luff AR, Atwood HL: Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscles of the mouse during postnatal development. J Cell Biol. 1971, 51: 369-383. 10.1083/jcb.51.2.369.
PubMed Central
CAS
PubMed
Google Scholar
Rossi D, Barone V, Giacomello E, Cusimano V, Sorrentino V: The sarcoplasmic reticulum: an organized patchwork of specialized domains. Traffic. 2008, 9: 1044-1049. 10.1111/j.1600-0854.2008.00717.x.
CAS
PubMed
Google Scholar
Takekura H, Flucher BE, Franzini-Armstrong C: Sequential docking, molecular differentiation, and positioning of T-Tubule/SR junctions in developing mouse skeletal muscle. Dev Biol. 2001, 239: 204-214. 10.1006/dbio.2001.0437.
CAS
PubMed
Google Scholar
Flucher BE, Takekura H, Franzini-Armstrong C: Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev Biol. 1993, 160: 135-147. 10.1006/dbio.1993.1292.
CAS
PubMed
Google Scholar
Cusimano V, Pampinella F, Giacomello E, Sorrentino V: Assembly and dynamics of proteins of the longitudinal and junctional sarcoplasmic reticulum in skeletal muscle cells. Proc Natl Acad Sci USA. 2009, 106: 4695-4700. 10.1073/pnas.0810243106.
PubMed Central
CAS
PubMed
Google Scholar
Franzini-Armstrong C: Simultaneous maturation of transverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse. Dev Biol. 1991, 146: 353-363. 10.1016/0012-1606(91)90237-W.
CAS
PubMed
Google Scholar
Lisanti MP, Scherer PE, Tang Z, Sargiacomo M: Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol. 1994, 4: 231-235. 10.1016/0962-8924(94)90114-7.
CAS
PubMed
Google Scholar
Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP: Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol. 1999, 19: 7289-7304.
PubMed Central
CAS
PubMed
Google Scholar
Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP: Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA. 1996, 93: 131-135. 10.1073/pnas.93.1.131.
PubMed Central
CAS
PubMed
Google Scholar
Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP: Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem. 1996, 271: 2255-2261. 10.1074/jbc.271.4.2255.
CAS
PubMed
Google Scholar
Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP: Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem. 1996, 271: 9690-9697. 10.1074/jbc.271.16.9690.
CAS
PubMed
Google Scholar
Parton RG, Way M, Zorzi N, Stang E: Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol. 1997, 136: 137-154. 10.1083/jcb.136.1.137.
PubMed Central
CAS
PubMed
Google Scholar
Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, Masetti E, Mazzocco M, Egeo A, Donati MA, et al: Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet. 1998, 18: 365-368. 10.1038/ng0498-365.
CAS
PubMed
Google Scholar
Betz RC, Schoser BG, Kasper D, Ricker K, Ramirez A, Stein V, Torbergsen T, Lee YA, Nothen MM, Wienker TF, et al: Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease. Nat Genet. 2001, 28: 218-219. 10.1038/90050.
CAS
PubMed
Google Scholar
Hayashi T, Arimura T, Ueda K, Shibata H, Hohda S, Takahashi M, Hori H, Koga Y, Oka N, Imaizumi T, et al: Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2004, 313: 178-184. 10.1016/j.bbrc.2003.11.101.
CAS
PubMed
Google Scholar
Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, Tester DJ, Balijepalli RC, Foell JD, Li Z, et al: Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation. 2006, 114: 2104-2112. 10.1161/CIRCULATIONAHA.106.635268.
CAS
PubMed
Google Scholar
Vaghy PL, Fang J, Wu W, Vaghy LP: Increased caveolin-3 levels in mdx mouse muscles. FEBS Lett. 1998, 431: 125-127. 10.1016/S0014-5793(98)00738-8.
CAS
PubMed
Google Scholar
Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M, Hou H, Kneitz B, Edelmann W, Lisanti MP: Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem. 2001, 276: 21425-21433. 10.1074/jbc.M100828200.
CAS
PubMed
Google Scholar
Galbiati F, Volonte D, Chu JB, Li M, Fine SW, Fu M, Bermudez J, Pedemonte M, Weidenheim KM, Pestell RG, et al: Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype. Proc Natl Acad Sci USA. 2000, 97: 9689-9694.
PubMed Central
CAS
PubMed
Google Scholar
Carozzi AJ, Ikonen E, Lindsay MR, Parton RG: Role of cholesterol in developing T-tubules: analogous mechanisms for T-tubule and caveolae biogenesis. Traffic. 2000, 1: 326-341. 10.1034/j.1600-0854.2000.010406.x.
CAS
PubMed
Google Scholar
Rosemblatt M, Hidalgo C, Vergara C, Ikemoto N: Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem. 1981, 256: 8140-8148.
CAS
PubMed
Google Scholar
Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, Kingston H, Garnier JM, Biancalana V, Oldfors A, et al: Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet. 2007, 39: 1134-1139. 10.1038/ng2086.
CAS
PubMed
Google Scholar
Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC, Farsad K, Wenk MR, De Camilli P: Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science. 2002, 297: 1193-1196. 10.1126/science.1071362.
CAS
PubMed
Google Scholar
Ramjaun AR, McPherson PS: Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J Neurochem. 1998, 70: 2369-2376.
CAS
PubMed
Google Scholar
Wechsler-Reya RJ, Elliott KJ, Prendergast GC: A role for the putative tumor suppressor Bin1 in muscle cell differentiation. Mol Cell Biol. 1998, 18: 566-575.
PubMed Central
CAS
PubMed
Google Scholar
Bitoun M, Maugenre S, Jeannet PY, Lacene E, Ferrer X, Laforet P, Martin JJ, Laporte J, Lochmuller H, Beggs AH, et al: Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet. 2005, 37: 1207-1209. 10.1038/ng1657.
CAS
PubMed
Google Scholar
Takei K, Slepnev VI, Haucke V, De Camilli P: Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol. 1999, 1: 33-39. 10.1038/9004.
CAS
PubMed
Google Scholar
Kojima C, Hashimoto A, Yabuta I, Hirose M, Hashimoto S, Kanaho Y, Sumimoto H, Ikegami T, Sabe H: Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J. 2004, 23: 4413-4422. 10.1038/sj.emboj.7600442.
PubMed Central
CAS
PubMed
Google Scholar
Razzaq A, Robinson IM, McMahon HT, Skepper JN, Su Y, Zelhof AC, Jackson AP, Gay NJ, O'Kane CJ: Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 2001, 15: 2967-2979. 10.1101/gad.207801.
PubMed Central
CAS
PubMed
Google Scholar
Toussaint A, Cowling BS, Hnia K, Mohr M, Oldfors A, Schwab Y, Yis U, Maisonobe T, Stojkovic T, Wallgren-Pettersson C, et al: Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol. 2011, 121: 253-266. 10.1007/s00401-010-0754-2.
PubMed
Google Scholar
Muller AJ, Baker JF, DuHadaway JB, Ge K, Farmer G, Donover PS, Meade R, Reid C, Grzanna R, Roach AH, et al: Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol Cell Biol. 2003, 23: 4295-4306. 10.1128/MCB.23.12.4295-4306.2003.
PubMed Central
CAS
PubMed
Google Scholar
Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, et al: A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet. 1998, 20: 37-42. 10.1038/1689.
CAS
PubMed
Google Scholar
Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, et al: Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet. 1998, 20: 31-36. 10.1038/1682.
CAS
PubMed
Google Scholar
Illa I, Serrano-Munuera C, Gallardo E, Lasa A, Rojas-Garcia R, Palmer J, Gallano P, Baiget M, Matsuda C, Brown RH: Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype. Ann Neurol. 2001, 49: 130-134. 10.1002/1531-8249(200101)49:1<130::AID-ANA22>3.0.CO;2-0.
CAS
PubMed
Google Scholar
Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP: Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 2003, 423: 168-172. 10.1038/nature01573.
CAS
PubMed
Google Scholar
Klinge L, Laval S, Keers S, Haldane F, Straub V, Barresi R, Bushby K: From T-tubule to sarcolemma: damage-induced dysferlin translocation in early myogenesis. FASEB J. 2007, 21: 1768-1776. 10.1096/fj.06-7659com.
CAS
PubMed
Google Scholar
Klinge L, Harris J, Sewry C, Charlton R, Anderson L, Laval S, Chiu YH, Hornsey M, Straub V, Barresi R, et al: Dysferlin associates with the developing T-tubule system in rodent and human skeletal muscle. Muscle Nerve. 2010, 41: 166-173. 10.1002/mus.21166.
PubMed
Google Scholar
Bittner RE, Anderson LV, Burkhardt E, Bashir R, Vafiadaki E, Ivanova S, Raffelsberger T, Maerk I, Hoger H, Jung M, et al: Dysferlin deletion in SJL mice (SJL-Dysf) defines a natural model for limb girdle muscular dystrophy 2B. Nat Genet. 1999, 23: 141-142. 10.1038/13770.
CAS
PubMed
Google Scholar
Glover LE, Newton K, Krishnan G, Bronson R, Boyle A, Krivickas LS, Brown RH: Dysferlin overexpression in skeletal muscle produces a progressive myopathy. Ann Neurol. 2010, 67: 384-393.
PubMed Central
CAS
PubMed
Google Scholar
Han R, Bansal D, Miyake K, Muniz VP, Weiss RM, McNeil PL, Campbell KP: Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury. J Clin Invest. 2007, 117: 1805-1813. 10.1172/JCI30848.
PubMed Central
CAS
PubMed
Google Scholar
Ho M, Post CM, Donahue LR, Lidov HG, Bronson RT, Goolsby H, Watkins SC, Cox GA, Brown RH: Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency. Hum Mol Genet. 2004, 13: 1999-2010. 10.1093/hmg/ddh212.
CAS
PubMed
Google Scholar
Ampong BN, Imamura M, Matsumiya T, Yoshida M, Takeda S: Intracellular localization of dysferlin and its association with the dihydropyridine receptor. Acta Myol. 2005, 24: 134-144.
CAS
PubMed
Google Scholar
Hernandez-Deviez DJ, Martin S, Laval SH, Lo HP, Cooper ST, North KN, Bushby K, Parton RG: Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Hum Mol Genet. 2006, 15: 129-142.
CAS
PubMed
Google Scholar
Selcen D, Stilling G, Engel AG: The earliest pathologic alterations in dysferlinopathy. Neurology. 2001, 56: 1472-1481.
CAS
PubMed
Google Scholar
Komazaki S, Nishi M, Kangawa K, Takeshima H: Immunolocalization of mitsugumin29 in developing skeletal muscle and effects of the protein expressed in amphibian embryonic cells. Dev Dyn. 1999, 215: 87-95. 10.1002/(SICI)1097-0177(199906)215:2<87::AID-DVDY1>3.0.CO;2-Y.
CAS
PubMed
Google Scholar
Komazaki S, Nishi M, Takeshima H, Nakamura H: Abnormal formation of sarcoplasmic reticulum networks and triads during early development of skeletal muscle cells in mitsugumin29-deficient mice. Dev Growth Differ. 2001, 43: 717-723. 10.1046/j.1440-169X.2001.00609.x.
CAS
PubMed
Google Scholar
Nishi M, Komazaki S, Kurebayashi N, Ogawa Y, Noda T, Iino M, Takeshima H: Abnormal features in skeletal muscle from mice lacking mitsugumin29. J Cell Biol. 1999, 147: 1473-1480. 10.1083/jcb.147.7.1473.
PubMed Central
CAS
PubMed
Google Scholar
Brotto MA, Nagaraj RY, Brotto LS, Takeshima H, Ma JJ, Nosek TM: Defective maintenance of intracellular Ca2+ homeostasis is linked to increased muscle fatigability in the MG29 null mice. Cell Res. 2004, 14: 373-378. 10.1038/sj.cr.7290237.
CAS
PubMed
Google Scholar
Pan Z, Yang D, Nagaraj RY, Nosek TA, Nishi M, Takeshima H, Cheng H, Ma J: Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol. 2002, 4: 379-383. 10.1038/ncb788.
CAS
PubMed
Google Scholar
Cai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko JK, Lin P, Thornton A, Zhao X, et al: MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol. 2009, 11: 56-64. 10.1038/ncb1812.
PubMed Central
CAS
PubMed
Google Scholar
Wang X, Xie W, Zhang Y, Lin P, Han L, Han P, Wang Y, Chen Z, Ji G, Zheng M, et al: Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair. Circ Res. 2010, 107: 76-83. 10.1161/CIRCRESAHA.109.215822.
CAS
PubMed
Google Scholar
Cai C, Weisleder N, Ko JK, Komazaki S, Sunada Y, Nishi M, Takeshima H, Ma J: Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J Biol Chem. 2009, 284: 15894-15902. 10.1074/jbc.M109.009589.
PubMed Central
CAS
PubMed
Google Scholar
Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K: Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell. 2000, 6: 11-22.
CAS
PubMed
Google Scholar
Minamisawa S, Oshikawa J, Takeshima H, Hoshijima M, Wang Y, Chien KR, Ishikawa Y, Matsuoka R: Junctophilin type 2 is associated with caveolin-3 and is down-regulated in the hypertrophic and dilated cardiomyopathies. Biochem Biophys Res Commun. 2004, 325: 852-856. 10.1016/j.bbrc.2004.10.107.
CAS
PubMed
Google Scholar
Wei S, Guo A, Chen B, Kutschke W, Xie YP, Zimmerman K, Weiss RM, Anderson ME, Cheng H, Song LS: T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res. 2010, 107: 520-531. 10.1161/CIRCRESAHA.109.212324.
PubMed Central
CAS
PubMed
Google Scholar
Holmes SE, O'Hearn E, Rosenblatt A, Callahan C, Hwang HS, Ingersoll-Ashworth RG, Fleisher A, Stevanin G, Brice A, Potter NT, et al: A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet. 2001, 29: 377-378. 10.1038/ng760.
CAS
PubMed
Google Scholar
Nishi M, Sakagami H, Komazaki S, Kondo H, Takeshima H: Coexpression of junctophilin type 3 and type 4 in brain. Brain Res Mol Brain Res. 2003, 118: 102-110.
CAS
PubMed
Google Scholar
Ito K, Komazaki S, Sasamoto K, Yoshida M, Nishi M, Kitamura K, Takeshima H: Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J Cell Biol. 2001, 154: 1059-1067. 10.1083/jcb.200105040.
PubMed Central
CAS
PubMed
Google Scholar
Komazaki S, Ito K, Takeshima H, Nakamura H: Deficiency of triad formation in developing skeletal muscle cells lacking junctophilin type 1. FEBS Lett. 2002, 524: 225-229. 10.1016/S0014-5793(02)03042-9.
CAS
PubMed
Google Scholar
Laporte J, Bedez F, Bolino A, Mandel JL: Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases. Hum Mol Genet. 2003, 12 (Spec No 2): R285-292.
CAS
PubMed
Google Scholar
Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N: A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet. 1996, 13: 175-182. 10.1038/ng0696-175.
CAS
PubMed
Google Scholar
Blondeau F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL: Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet. 2000, 9: 2223-2229.
CAS
PubMed
Google Scholar
Schaletzky J, Dove SK, Short B, Lorenzo O, Clague MJ, Barr FA: Phosphatidylinositol-5-phosphate activation and conserved substrate specificity of the myotubularin phosphatidylinositol 3-phosphatases. Curr Biol. 2003, 13: 504-509. 10.1016/S0960-9822(03)00132-5.
CAS
PubMed
Google Scholar
Taylor GS, Maehama T, Dixon JE: Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci USA. 2000, 97: 8910-8915. 10.1073/pnas.160255697.
PubMed Central
CAS
PubMed
Google Scholar
Tronchere H, Laporte J, Pendaries C, Chaussade C, Liaubet L, Pirola L, Mandel JL, Payrastre B: Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells. J Biol Chem. 2004, 279: 7304-7312.
CAS
PubMed
Google Scholar
Buj-Bello A, Fougerousse F, Schwab Y, Messaddeq N, Spehner D, Pierson CR, Durand M, Kretz C, Danos O, Douar AM, et al: AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum Mol Genet. 2008, 17: 2132-2143. 10.1093/hmg/ddn112.
PubMed Central
CAS
PubMed
Google Scholar
Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF, Mandel JL: The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci USA. 2002, 99: 15060-15065. 10.1073/pnas.212498399.
PubMed Central
CAS
PubMed
Google Scholar
Al-Qusairi L, Weiss N, Toussaint A, Berbey C, Messaddeq N, Kretz C, Sanoudou D, Beggs AH, Allard B, Mandel JL, et al: T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci USA. 2009, 106: 18763-18768. 10.1073/pnas.0900705106.
PubMed Central
CAS
PubMed
Google Scholar
Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL: Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet. 2009, 5: e1000372-10.1371/journal.pgen.1000372.
PubMed Central
PubMed
Google Scholar
Ribeiro I, Yuan L, Tanentzapf G, Dowling JJ, Kiger A: Phosphoinositide regulation of integrin trafficking required for muscle attachment and maintenance. PLoS Genet. 2011, 7: e1001295-10.1371/journal.pgen.1001295.
PubMed Central
CAS
PubMed
Google Scholar
Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O'Brien PJ, MacLennan DH: Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science. 1991, 253: 448-451. 10.1126/science.1862346.
CAS
PubMed
Google Scholar
Otsu K, Khanna VK, Archibald AL, MacLennan DH: Cosegregation of porcine malignant hyperthermia and a probable causal mutation in the skeletal muscle ryanodine receptor gene in backcross families. Genomics. 1991, 11: 744-750. 10.1016/0888-7543(91)90083-Q.
CAS
PubMed
Google Scholar
Quane KA, Healy JM, Keating KE, Manning BM, Couch FJ, Palmucci LM, Doriguzzi C, Fagerlund TH, Berg K, Ording H, et al: Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Genet. 1993, 5: 51-55. 10.1038/ng0993-51.
CAS
PubMed
Google Scholar
Zhang Y, Chen HS, Khanna VK, De Leon S, Phillips MS, Schappert K, Britt BA, Browell AK, MacLennan DH: A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet. 1993, 5: 46-50. 10.1038/ng0993-46.
CAS
PubMed
Google Scholar
Monnier N, Ferreiro A, Marty I, Labarre-Vila A, Mezin P, Lunardi J: A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. Hum Mol Genet. 2003, 12: 1171-1178. 10.1093/hmg/ddg121.
CAS
PubMed
Google Scholar
Clarke NF, Waddell LB, Cooper ST, Perry M, Smith RL, Kornberg AJ, Muntoni F, Lillis S, Straub V, Bushby K, et al: Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat. 2010, 31: E1544-1550. 10.1002/humu.21278.
CAS
PubMed
Google Scholar
Sato I, Wu S, Ibarra MC, Hayashi YK, Fujita H, Tojo M, Oh SJ, Nonaka I, Noguchi S, Nishino I: Congenital neuromuscular disease with uniform type 1 fiber and RYR1 mutation. Neurology. 2008, 70: 114-122.
CAS
PubMed
Google Scholar
Bevilacqua JA, Monnier N, Bitoun M, Eymard B, Ferreiro A, Monges S, Lubieniecki F, Taratuto AL, Laquerriere A, Claeys KG, et al: Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization. Neuropathol Appl Neurobiol. 2011, 37: 271-284. 10.1111/j.1365-2990.2010.01149.x.
CAS
PubMed
Google Scholar
Wilmshurst JM, Lillis S, Zhou H, Pillay K, Henderson H, Kress W, Muller CR, Ndondo A, Cloke V, Cullup T, et al: RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol. 2010, 68: 717-726. 10.1002/ana.22119.
CAS
PubMed
Google Scholar
Yuan SH, Arnold W, Jorgensen AO: Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ. J Cell Biol. 1991, 112: 289-301. 10.1083/jcb.112.2.289.
CAS
PubMed
Google Scholar
Chaudhari N: A single nucleotide deletion in the skeletal muscle-specific calcium channel transcript of muscular dysgenesis (mdg) mice. J Biol Chem. 1992, 267: 25636-25639.
CAS
PubMed
Google Scholar
Felder E, Protasi F, Hirsch R, Franzini-Armstrong C, Allen PD: Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle. Biophys J. 2002, 82: 3144-3149. 10.1016/S0006-3495(02)75656-7.
PubMed Central
CAS
PubMed
Google Scholar
Franzini-Armstrong C, Pincon-Raymond M, Rieger F: Muscle fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings. Dev Biol. 1991, 146: 364-376. 10.1016/0012-1606(91)90238-X.
CAS
PubMed
Google Scholar
Powell JA, Petherbridge L, Flucher BE: Formation of triads without the dihydropyridine receptor alpha subunits in cell lines from dysgenic skeletal muscle. J Cell Biol. 1996, 134: 375-387. 10.1083/jcb.134.2.375.
CAS
PubMed
Google Scholar
Takekura H, Franzini-Armstrong C: Correct targeting of dihydropyridine receptors and triadin in dyspedic mouse skeletal muscle in vivo. Dev Dyn. 1999, 214: 372-380. 10.1002/(SICI)1097-0177(199904)214:4<372::AID-AJA9>3.0.CO;2-Q.
CAS
PubMed
Google Scholar
Knudson CM, Chaudhari N, Sharp AH, Powell JA, Beam KG, Campbell KP: Specific absence of the alpha 1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J Biol Chem. 1989, 264: 1345-1348.
CAS
PubMed
Google Scholar
Marty I, Faure J, Fourest-Lieuvin A, Vassilopoulos S, Oddoux S, Brocard J: Triadin: what possible function 20 years later?. J Physiol. 2009, 587: 3117-3121. 10.1113/jphysiol.2009.171892.
PubMed Central
CAS
PubMed
Google Scholar
Shen X, Franzini-Armstrong C, Lopez JR, Jones LR, Kobayashi YM, Wang Y, Kerrick WG, Caswell AH, Potter JD, Miller T, et al: Triadins modulate intracellular Ca(2+) homeostasis but are not essential for excitation-contraction coupling in skeletal muscle. J Biol Chem. 2007, 282: 37864-37874. 10.1074/jbc.M705702200.
CAS
PubMed
Google Scholar
Zhang R, Yang J, Zhu J, Xu X: Depletion of zebrafish Tcap leads to muscular dystrophy via disrupting sarcomere-membrane interaction, not sarcomere assembly. Hum Mol Genet. 2009, 18: 4130-4140. 10.1093/hmg/ddp362.
PubMed Central
CAS
PubMed
Google Scholar
Marieb Elaine: Human Anatomy and Physiology. 2007, Pearson Education, Inc., 7
Google Scholar