Sabourin LA, Rudnicki MA: The molecular regulation of myogenesis. Clin Genet. 2000, 57: 16-25.
CAS
PubMed
Google Scholar
Le Grand F, Rudnicki MA: Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol. 2007, 19: 628-633. 10.1016/j.ceb.2007.09.012.
PubMed Central
CAS
PubMed
Google Scholar
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S: The protein kinase complement of the human genome. Science. 2002, 298: 1912-1934. 10.1126/science.1075762.
CAS
PubMed
Google Scholar
Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G: The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci USA. 2004, 101: 11707-11712. 10.1073/pnas.0306880101.
PubMed Central
CAS
PubMed
Google Scholar
Walsh DA, Perkins JP, Krebs EG: An adenosine 3',5'-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem. 1968, 243: 3763-3765.
CAS
PubMed
Google Scholar
Shabb JB: Physiological substrates of cAMP-dependent protein kinase. Chem Rev. 2001, 101: 2381-2411. 10.1021/cr000236l.
CAS
PubMed
Google Scholar
Chen AE, Ginty DD, Fan CM: Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature. 2005, 433: 317-322. 10.1038/nature03126.
CAS
PubMed
Google Scholar
Li L, Heller-Harrison R, Czech M, Olson EN: Cyclic AMP-dependent protein kinase inhibits the activity of myogenic helix-loop-helix proteins. Mol Cell Biol. 1992, 12: 4478-4485.
PubMed Central
CAS
PubMed
Google Scholar
Winter B, Braun T, Arnold HH: cAMP-dependent protein kinase represses myogenic differentiation and the activity of the muscle-specific helix-loop-helix transcription factors Myf-5 and MyoD. J Biol Chem. 1993, 268: 9869-9878.
CAS
PubMed
Google Scholar
Du M, Perry RLS, Nowacki NB, Gordon JW, Salma J, Zhao J, Aziz A, Chan J, Siu KWM, McDermott JC: Protein kinase A represses skeletal myogenesis by targeting myocyte enhancer factor 2D. Mol Cell Biol. 2008, 28: 2952-2970. 10.1128/MCB.00248-08.
PubMed Central
CAS
PubMed
Google Scholar
Siow NL, Choi RCY, Cheng AWM, Jiang JXS, Wan DCC, Zhu SQ, Tsim KWK: A cyclic AMP-dependent pathway regulates the expression of acetylcholinesterase during myogenic differentiation of C2C12 cells. J Biol Chem. 2002, 277: 36129-36136. 10.1074/jbc.M206498200.
CAS
PubMed
Google Scholar
Hu JS, Olson EN: Regulation of differentiation of the BC3H1 muscle cell line through cAMP-dependent and -independent pathways. J Biol Chem. 1988, 263: 19670-19677.
CAS
PubMed
Google Scholar
Salminen A, Braun T, Buchberger A, Jürs S, Winter B, Arnold HH: Transcription of the muscle regulatory gene MYF4 is regulated by serum components, peptide growth factors and signaling pathways involving G proteins. J Cell Biol. 1991, 115: 905-917. 10.1083/jcb.115.4.905.
CAS
PubMed
Google Scholar
De Arcangelis V, Coletti D, Conti M, Lagarde M, Molinaro M, Adamo S, Nemoz G, Naro F: IGF-I-induced differentiation of L6 myogenic cells requires the activity of cAMP-phosphodiesterase. Mol Biol Cell. 2003, 14: 1392-1404. 10.1091/mbc.E02-03-0156.
PubMed Central
CAS
PubMed
Google Scholar
Mukai A, Hashimoto N: Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion. Exp Cell Res. 2008, 314: 387-397. 10.1016/j.yexcr.2007.10.006.
CAS
PubMed
Google Scholar
Rogers JE, Narindrasorasak S, Cates GA, Sanwal BD: Regulation of protein kinase and its regulatory subunits during skeletal myogenesis. J Biol Chem. 1985, 260: 8002-8007.
CAS
PubMed
Google Scholar
Lorimer IA, Sanwal BD: Regulation of cyclic AMP-dependent protein kinase levels during skeletal myogenesis. Biochem J. 1989, 264: 305-308.
PubMed Central
CAS
PubMed
Google Scholar
Murray AW: Recycling the cell cycle: cyclins revisited. Cell. 2004, 116: 221-234. 10.1016/S0092-8674(03)01080-8.
CAS
PubMed
Google Scholar
Rao SS, Chu C, Kohtz DS: Ectopic expression of cyclin D1 prevents activation of gene transcription by myogenic basic helix-loop-helix regulators. Mol Cell Biol. 1994, 14: 5259-5267.
PubMed Central
CAS
PubMed
Google Scholar
Skapek SX, Rhee J, Spicer DB, Lassar AB: Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science. 1995, 267: 1022-1024. 10.1126/science.7863328.
CAS
PubMed
Google Scholar
Rao SS, Kohtz DS: Positive and negative regulation of D-type cyclin expression in skeletal myoblasts by basic fibroblast growth factor and transforming growth factor β: a role for cyclin D1 in control of myoblast differentiation. J Biol Chem. 1995, 270: 4093-4100. 10.1074/jbc.270.8.4093.
CAS
PubMed
Google Scholar
Skapek SX, Rhee J, Kim PS, Novitch BG, Lassar AB: Cyclin-mediated inhibition of muscle gene expression via a mechanism that is independent of pRB hyperphosphorylation. Mol Cell Biol. 1996, 16: 7043-7053.
PubMed Central
CAS
PubMed
Google Scholar
Guo K, Walsh K: Inhibition of myogenesis by multiple cyclin-Cdk complexes: coordinate regulation of myogenesis and cell cycle activity at the level of E2F. J Biol Chem. 1997, 272: 791-797. 10.1074/jbc.272.2.791.
CAS
PubMed
Google Scholar
Saab R, Bills JL, Miceli AP, Anderson CM, Khoury JD, Fry DW, Navid F, Houghton PJ, Skapek SX: Pharmacologic inhibition of cyclin-dependent kinase 4/6 activity arrests proliferation in myoblasts and rhabdomyosarcoma-derived cells. Mol Cancer Ther. 2006, 5: 1299-1308. 10.1158/1535-7163.MCT-05-0383.
CAS
PubMed
Google Scholar
Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal-Ginard B: Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell. 1993, 72: 309-324. 10.1016/0092-8674(93)90110-C.
CAS
PubMed
Google Scholar
Kitzmann M, Vandromme M, Schaeffer V, Carnac G, Labbé JC, Lamb N, Fernandez A: cdk1- and cdk2-mediated phosphorylation of MyoD Ser200 in growing C2 myoblasts: role in modulating MyoD half-life and myogenic activity. Mol Cell Biol. 1999, 19: 3167-3176.
PubMed Central
CAS
PubMed
Google Scholar
Reynaud EG, Pelpel K, Guillier M, Leibovitch MP, Leibovitch SA: p57(Kip2) stabilizes the MyoD protein by inhibiting cyclin E-Cdk2 kinase activity in growing myoblasts. Mol Cell Biol. 1999, 19: 7621-7629.
PubMed Central
CAS
PubMed
Google Scholar
Tintignac LA, Leibovitch MP, Kitzmann M, Fernandez A, Ducommun B, Meijer L, Leibovitch SA: Cyclin E-cdk2 phosphorylation promotes late G1-phase degradation of MyoD in muscle cells. Exp Cell Res. 2000, 259: 300-307. 10.1006/excr.2000.4973.
CAS
PubMed
Google Scholar
Song A, Wang Q, Goebl MG, Harrington MA: Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol Cell Biol. 1998, 18: 4994-4999.
PubMed Central
CAS
PubMed
Google Scholar
Zhang JM, Wei Q, Zhao X, Paterson BM: Coupling of the cell cycle and myogenesis through the cyclin D1-dependent interaction of MyoD with cdk4. EMBO J. 1999, 18: 926-933. 10.1093/emboj/18.4.926.
PubMed Central
CAS
PubMed
Google Scholar
Lazaro JB, Bailey PJ, Lassar AB: Cyclin D-cdk4 activity modulates the subnuclear localization and interaction of MEF2 with SRC-family coactivators during skeletal muscle differentiation. Genes Dev. 2002, 16: 1792-1805. 10.1101/gad.U-9988R.
PubMed Central
CAS
PubMed
Google Scholar
Jahn L, Sadoshima J, Izumo S: Cyclins and cyclin-dependent kinases are differentially regulated during terminal differentiation of C2C12 muscle cells. Exp Cell Res. 1994, 212: 297-307. 10.1006/excr.1994.1147.
CAS
PubMed
Google Scholar
Guo K, Wang J, Andrés V, Smith RC, Walsh K: MyoD-induced expression of p21 inhibits cyclin-dependent kinase activity upon myocyte terminal differentiation. Mol Cell Biol. 1995, 15: 3823-3829.
PubMed Central
CAS
PubMed
Google Scholar
Wang J, Nadal-Ginard B: Regulation of cyclins and p34CDC2 expression during terminal differentiation of C2C12 myocytes. Biochem Biophys Res Commun. 1995, 206: 82-88. 10.1006/bbrc.1995.1012.
CAS
PubMed
Google Scholar
Franklin DS, Xiong Y: Induction of p18INK4c and its predominant association with CDK4 and CDK6 during myogenic differentiation. Mol Biol Cell. 1996, 7: 1587-1599.
PubMed Central
CAS
PubMed
Google Scholar
Wang J, Walsh K: Inhibition of retinoblastoma protein phosphorylation by myogenesis-induced changes in the subunit composition of the cyclin-dependent kinase 4 complex. Cell Growth Differ. 1996, 7: 1471-1478.
CAS
PubMed
Google Scholar
Tedesco D, Baron L, Fischer-Fantuzzi L, Vesco C: Induction of cyclins E and A in response to mitogen removal: a basic alteration associated with the arrest of differentiation of C2 myoblasts transformed by simian virus 40 large T antigen. J Virol. 1997, 71: 2217-2224.
PubMed Central
CAS
PubMed
Google Scholar
Knudsen ES, Pazzagli C, Born TL, Bertolaet BL, Knudsen KE, Arden KC, Henry RR, Feramisco JR: Elevated cyclins and cyclin-dependent kinase activity in the rhabdomyosarcoma cell line RD. Cancer Res. 1998, 58: 2042-2049.
CAS
PubMed
Google Scholar
Chu CY, Lim RW: Involvement of p27kip1 and cyclin D3 in the regulation of cdk2 activity during skeletal muscle differentiation. Biochim Biophys Acta. 2000, 1497: 175-185. 10.1016/S0167-4889(00)00064-1.
CAS
PubMed
Google Scholar
Latella L, Sacco A, Pajalunga D, Tiainen M, Macera D, D'Angelo M, Felici A, Sacchi A, Crescenzi M: Reconstitution of cyclin D1-associated kinase activity drives terminally differentiated cells into the cell cycle. Mol Cell Biol. 2001, 21: 5631-5643. 10.1128/MCB.21.16.5631-5643.2001.
PubMed Central
CAS
PubMed
Google Scholar
Peschiaroli A, Figliola R, Coltella L, Strom A, Valentini A, D'Agnano I, Maione R: MyoD induces apoptosis in the absence of RB function through a p21WAF1-dependent re-localization of cyclin/cdk complexes to the nucleus. Oncogene. 2002, 21: 8114-8127. 10.1038/sj.onc.1206010.
CAS
PubMed
Google Scholar
Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB: Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science. 1995, 267: 1018-1021. 10.1126/science.7863327.
CAS
PubMed
Google Scholar
Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW, Elledge SJ: p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science. 1995, 267: 1024-1027. 10.1126/science.7863329.
CAS
PubMed
Google Scholar
Wang J, Walsh K: Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science. 1996, 273: 359-361. 10.1126/science.273.5273.359.
PubMed Central
CAS
PubMed
Google Scholar
Puri PL, Balsano C, Burgio VL, Chirillo P, Natoli G, Ricci L, Mattei E, Graessmann A, Levrero M: MyoD prevents cyclin A/cdk2 containing E2F complexes formation in terminally differentiated myocytes. Oncogene. 1997, 14: 1171-1184. 10.1038/sj.onc.1200941.
CAS
PubMed
Google Scholar
Phelps DE, Hsiao KM, Li Y, Hu N, Franklin DS, Westphal E, Lee EYHP, Xiong Y: Coupled transcriptional and translational control of cyclin-dependent kinase inhibitor p18INK4c expression during myogenesis. Mol Cell Biol. 1998, 18: 2334-2343.
PubMed Central
CAS
PubMed
Google Scholar
Zabludoff SD, Csete M, Wagner R, Yu X, Wold BJ: p27Kip1 is expressed transiently in developing myotomes and enhances myogenesis. Cell Growth Differ. 1998, 9: 1-11.
CAS
PubMed
Google Scholar
Zhang P, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ: p21CIP1 and p57KIP2 control muscle differentiation at the myogenin step. Genes Dev. 1999, 13: 213-224. 10.1101/gad.13.2.213.
PubMed Central
CAS
PubMed
Google Scholar
Kiess M, Gill RM, Hamel PA: Expression of the positive regulator of cell cycle progression, cyclin D3, is induced during differentiation of myoblasts into quiescent myotubes. Oncogene. 1995, 10: 159-166.
CAS
PubMed
Google Scholar
Lazaro JB, Kitzmann M, Poul MA, Vandromme M, Lamb NJ, Fernandez A: Cyclin dependent kinase 5, cdk5, is a positive regulator of myogenesis in mouse C2 cells. J Cell Sci. 1997, 110: 1251-1260.
CAS
PubMed
Google Scholar
Sahlgren CM, Mikhailov A, Vaittinen S, Pallari HM, Kalimo H, Pant HC, Eriksson JE: Cdk5 regulates the organization of Nestin and its association with p35. Mol Cell Biol. 2003, 23: 5090-5106. 10.1128/MCB.23.14.5090-5106.2003.
PubMed Central
CAS
PubMed
Google Scholar
Sarker KP, Lee KY: L6 myoblast differentiation is modulated by Cdk5 via the PI3K-AKT-p70S6K signaling pathway. Oncogene. 2004, 23: 6064-6070. 10.1038/sj.onc.1207819.
CAS
PubMed
Google Scholar
de Thonel A, Ferraris SE, Pallari HM, Imanishi SY, Kochin V, Hosokawa T, Hisanaga S, Sahlgren C, Eriksson JE: Protein kinase Cζ regulates Cdk5/p25 signaling during myogenesis. Mol Biol Cell. 2010, 21: 1423-1434. 10.1091/mbc.E09-10-0847.
PubMed Central
CAS
PubMed
Google Scholar
Pallari HM, Lindqvist J, Torvaldson E, Ferraris SE, He T, Sahlgren C, Eriksson JE: Nestin as a regulator of Cdk5 in differentiating myoblasts. Mol Biol Cell. 2011, 22: 1539-1549. 10.1091/mbc.E10-07-0568.
PubMed Central
CAS
PubMed
Google Scholar
Simone C, Stiegler P, Bagella L, Pucci B, Bellan C, De Falco G, De Luca A, Guanti G, Puri PL, Giordano A: Activation of MyoD-dependent transcription by cdk9/cyclin T2. Oncogene. 2002, 21: 4137-4148. 10.1038/sj.onc.1205493.
CAS
PubMed
Google Scholar
Giacinti C, Bagella L, Puri PL, Giordano A, Simone C: MyoD recruits the cdk9/cyclin T2 complex on myogenic-genes regulatory regions. J Cell Physiol. 2006, 206: 807-813. 10.1002/jcp.20523.
CAS
PubMed
Google Scholar
Giacinti C, Musarò A, De Falco G, Jourdan I, Molinaro M, Bagella L, Simone C, Giordano A: Cdk9-55: a new player in muscle regeneration. J Cell Physiol. 2008, 216: 576-582. 10.1002/jcp.21361.
CAS
PubMed
Google Scholar
Ray LB, Sturgill TW: Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc Natl Acad Sci USA. 1987, 84: 1502-1506. 10.1073/pnas.84.6.1502.
PubMed Central
CAS
PubMed
Google Scholar
Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, Cobb MH: An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science. 1990, 249: 64-67. 10.1126/science.2164259.
CAS
PubMed
Google Scholar
Reed SA, Ouellette SE, Liu X, Allen RE, Johnson SE: E2F5 and LEK1 translocation to the nucleus is an early event demarcating myoblast quiescence. J Cell Biochem. 2007, 101: 1394-1408. 10.1002/jcb.21256.
CAS
PubMed
Google Scholar
Volonte D, Liu Y, Galbiati F: The modulation of caveolin-1 expression controls satellite cell activation during muscle repair. FASEB J. 2005, 19: 237-239.
CAS
PubMed
Google Scholar
Kook SH, Son YO, Choi KC, Lee HJ, Chung WT, Hwang IH, Lee JC: Cyclic mechanical stress suppresses myogenic differentiation of adult bovine satellite cells through activation of extracellular signal-regulated kinase. Mol Cell Biochem. 2008, 309: 133-141. 10.1007/s11010-007-9651-y.
CAS
PubMed
Google Scholar
Jahn L, Sadoshima J, Izumo S: Cyclins and cyclin-dependent kinases are differentially regulated during terminal differentiation of C2C12 muscle cells. Exp Cell Res. 1994, 212: 297-307. 10.1006/excr.1994.1147.
CAS
PubMed
Google Scholar
Miralles F, Ron D, Baiget M, Félez J, Muñoz-Cánoves P: Differential regulation of urokinase-type plasminogen activator expression by basic fibroblast growth factor and serum in myogenesis: requirement of a common mitogen-activated protein kinase pathway. J Biol Chem. 1998, 273: 2052-2058. 10.1074/jbc.273.4.2052.
CAS
PubMed
Google Scholar
Pizon V, Baldacci G: Rap1A protein interferes with various MAP kinase activating pathways in skeletal myogenic cells. Oncogene. 2000, 19: 6074-6081. 10.1038/sj.onc.1203984.
CAS
PubMed
Google Scholar
Adi S, Bin-Abbas B, Wu NY, Rosenthal SM: Early stimulation and late inhibition of extracellular signal-regulated kinase 1/2 phosphorylation by IGF-I: a potential mechanism mediating the switch in IGF-I action on skeletal muscle cell differentiation. Endocrinology. 2002, 143: 511-516. 10.1210/en.143.2.511.
CAS
PubMed
Google Scholar
Milasincic DJ, Calera MR, Farmer SR, Pilch PF: Stimulation of C2C12 myoblast growth by basic fibroblast growth factor and insulin-like growth factor 1 can occur via mitogen-activated protein kinase-dependent and -independent pathways. Mol Cell Biol. 1996, 16: 5964-5973.
PubMed Central
CAS
PubMed
Google Scholar
Kudla AJ, Jones NC, Rosenthal RS, Arthur K, Clase KL, Olwin BB: The FGF receptor-1 tyrosine kinase domain regulates myogenesis but is not sufficient to stimulate proliferation. J Cell Biol. 1998, 142: 241-250. 10.1083/jcb.142.1.241.
PubMed Central
CAS
PubMed
Google Scholar
Jones NC, Fedorov YV, Rosenthal RS, Olwin BB: ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol. 2001, 186: 104-115. 10.1002/1097-4652(200101)186:1<104::AID-JCP1015>3.0.CO;2-0.
CAS
PubMed
Google Scholar
Tortorella LL, Milasincic DJ, Pilch PF: Critical proliferation-independent window for basic fibroblast growth factor repression of myogenesis via the p42/p44 MAPK signaling pathway. J Biol Chem. 2001, 276: 13709-13717.
CAS
PubMed
Google Scholar
Nagata Y, Honda Y, Matsuda R: FGF2 induces ERK phosphorylation through Grb2 and PKC during quiescent myogenic cell activation. Cell Struct Funct. 2010, 35: 63-71. 10.1247/csf.09024.
CAS
PubMed
Google Scholar
Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR: The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem. 1997, 272: 6653-6662. 10.1074/jbc.272.10.6653.
CAS
PubMed
Google Scholar
Lawlor MA, Feng X, Everding DR, Sieger K, Stewart CE, Rotwein P: Dual control of muscle cell survival by distinct growth factor-regulated signaling pathways. Mol Cell Biol. 2000, 20: 3256-3265. 10.1128/MCB.20.9.3256-3265.2000.
PubMed Central
CAS
PubMed
Google Scholar
Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, Booth FW: Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway. J Biol Chem. 2000, 275: 35942-35952. 10.1074/jbc.M005832200.
CAS
PubMed
Google Scholar
Jo C, Kim H, Jo I, Choi I, Jung SC, Kim J, Kim SS, Jo SA: Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Biochim Biophys Acta. 2005, 1743: 187-197. 10.1016/j.bbamcr.2004.11.002.
CAS
PubMed
Google Scholar
Kudla AJ, John ML, Bowen-Pope DF, Rainish B, Olwin BB: A requirement for fibroblast growth factor in regulation of skeletal muscle growth and differentiation cannot be replaced by activation of platelet-derived growth factor signaling pathways. Mol Cell Biol. 1995, 15: 3238-3246.
PubMed Central
CAS
PubMed
Google Scholar
Li J, Johnson SE: ERK2 is required for efficient terminal differentiation of skeletal myoblasts. Biochem Biophys Res Commun. 2006, 345: 1425-1433. 10.1016/j.bbrc.2006.05.051.
CAS
PubMed
Google Scholar
Heller H, Gredinger E, Bengal E: Rac1 inhibits myogenic differentiation by preventing the complete withdrawal of myoblasts from the cell cycle. J Biol Chem. 2001, 276: 37307-37316. 10.1074/jbc.M103195200.
CAS
PubMed
Google Scholar
Lathrop B, Thomas K, Glaser L: Control of myogenic differentiation by fibroblast growth factor is mediated by position in the G1 phase of the cell cycle. J Cell Biol. 1985, 101: 2194-2198. 10.1083/jcb.101.6.2194.
CAS
PubMed
Google Scholar
Weyman CM, Ramocki MB, Taparowsky EJ, Wolfman A: Distinct signaling pathways regulate transformation and inhibition of skeletal muscle differentiation by oncogenic Ras. Oncogene. 1997, 14: 697-704. 10.1038/sj.onc.1200874.
CAS
PubMed
Google Scholar
Samuel DS, Ewton DZ, Coolican SA, Petley TD, McWade FJ, Florini JR: Raf-1 activation stimulates proliferation and inhibits IGF-stimulated differentiation in L6A1 myoblasts. Horm Metab Res. 1999, 31: 55-64. 10.1055/s-2007-978699.
CAS
PubMed
Google Scholar
Campbell JS, Wenderoth MP, Hauschka SD, Krebs EG: Differential activation of mitogen-activated protein kinase in response to basic fibroblast growth factor in skeletal muscle cells. Proc Natl Acad Sci USA. 1995, 92: 870-874. 10.1073/pnas.92.3.870.
PubMed Central
CAS
PubMed
Google Scholar
Spizz G, Roman D, Strauss A, Olson EN: Serum and fibroblast growth factor inhibit myogenic differentiation through a mechanism dependent on protein synthesis and independent of cell proliferation. J Biol Chem. 1986, 261: 9483-9488.
CAS
PubMed
Google Scholar
Clegg CH, Linkhart TA, Olwin BB, Hauschka SD: Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol. 1987, 105: 949-956. 10.1083/jcb.105.2.949.
CAS
PubMed
Google Scholar
Vaidya TB, Rhodes SJ, Taparowsky EJ, Konieczny SF: Fibroblast growth factor and transforming growth factor β repress transcription of the myogenic regulatory gene MyoD1. Mol Cell Biol. 1989, 9: 3576-3579.
PubMed Central
CAS
PubMed
Google Scholar
Yoshida S, Fujisawa-Sehara A, Taki T, Arai K, Nabeshima Y: Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts. J Cell Biol. 1996, 132: 181-193. 10.1083/jcb.132.1.181.
CAS
PubMed
Google Scholar
Montarras D, Aurade F, Johnson T, Ilan J, Gros F, Pinset C: Autonomous differentiation in the mouse myogenic cell line, C2, involves a mutual positive control between insulin-like growth factor II and MyoD, operating as early as at the myoblast stage. J Cell Sci. 1996, 109: 551-560.
CAS
PubMed
Google Scholar
Weyman CM, Wolfman A: Mitogen-activated protein kinase kinase (MEK) activity is required for inhibition of skeletal muscle differentiation by insulin-like growth factor 1 or fibroblast growth factor 2. Endocrinology. 1998, 139: 1794-1800. 10.1210/en.139.4.1794.
CAS
PubMed
Google Scholar
Peña TL, Chen SH, Konieczny SF, Rane SG: Ras/MEK/ERK up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-β suppression of myogenesis. J Biol Chem. 2000, 275: 13677-13682. 10.1074/jbc.275.18.13677.
PubMed
Google Scholar
Olson EN, Spizz G, Tainsky MA: The oncogenic forms of N-ras or H-ras prevent skeletal myoblast differentiation. Mol Cell Biol. 1987, 7: 2104-2111.
PubMed Central
CAS
PubMed
Google Scholar
Gossett LA, Zhang W, Olson EN: Dexamethasone-dependent inhibition of differentiation of C2 myoblasts bearing steroid-inducible N-ras oncogenes. J Cell Biol. 1988, 106: 2127-2137. 10.1083/jcb.106.6.2127.
CAS
PubMed
Google Scholar
Bennett AM, Tonks NK: Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science. 1997, 278: 1288-1291. 10.1126/science.278.5341.1288.
CAS
PubMed
Google Scholar
Sarbassov DD, Jones LG, Peterson CA: Extracellular signal-regulated kinase-1 and -2 respond differently to mitogenic and differentiative signaling pathways in myoblasts. Mol Endocrinol. 1997, 11: 2038-2047. 10.1210/me.11.13.2038.
CAS
PubMed
Google Scholar
Rommel C, Clarke BA, Zimmermann S, Nuñez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ: Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science. 1999, 286: 1738-1741. 10.1126/science.286.5445.1738.
CAS
PubMed
Google Scholar
Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR, Karin M, Wang JY, Puri PL: p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol. 2000, 20: 3951-3964. 10.1128/MCB.20.11.3951-3964.2000.
PubMed Central
CAS
PubMed
Google Scholar
Winter B, Arnold HH: Activated raf kinase inhibits muscle cell differentiation through a MEF2-dependent mechanism. J Cell Sci. 2000, 113: 4211-4220.
CAS
PubMed
Google Scholar
Khurana A, Dey CS: Subtype specific roles of mitogen activated protein kinases in L6E9 skeletal muscle cell differentiation. Mol Cell Biochem. 2002, 238: 27-39. 10.1023/A:1019957602038.
CAS
PubMed
Google Scholar
Wang X, Thomson SR, Starkey JD, Page JL, Ealy AD, Johnson SE: Transforming growth factor β1 is up-regulated by activated Raf in skeletal myoblasts but does not contribute to the differentiation-defective phenotype. J Biol Chem. 2004, 279: 2528-2534.
CAS
PubMed
Google Scholar
Tiffin N, Adi S, Stokoe D, Wu NY, Rosenthal SM: Akt phosphorylation is not sufficient for insulin-like growth factor-stimulated myogenin expression but must be accompanied by down-regulation of mitogen-activated protein kinase/extracellular signal-regulated kinase phosphorylation. Endocrinology. 2004, 145: 4991-4996. 10.1210/en.2004-0101.
CAS
PubMed
Google Scholar
Rossi S, Stoppani E, Puri PL, Fanzani A: Differentiation of human rhabdomyosarcoma RD cells is regulated by reciprocal, functional interactions between myostatin, p38 and extracellular regulated kinase signalling pathways. Eur J Cancer. 2011, 47: 1095-1105. 10.1016/j.ejca.2010.12.010.
CAS
PubMed
Google Scholar
Lassar AB, Thayer MJ, Overell RW, Weintraub H: Transformation by activated ras or fos prevents myogenesis by inhibiting expression of MyoD1. Cell. 1989, 58: 659-667. 10.1016/0092-8674(89)90101-3.
CAS
PubMed
Google Scholar
Konieczny SF, Drobes BL, Menke SL, Taparowsky EJ: Inhibition of myogenic differentiation by the H-ras oncogene is associated with the down regulation of the MyoD1 gene. Oncogene. 1989, 4: 473-481.
CAS
PubMed
Google Scholar
Ramocki MB, Johnson SE, White MA, Ashendel CL, Konieczny SF, Taparowsky EJ: Signaling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis. Mol Cell Biol. 1997, 17: 3547-3555.
PubMed Central
CAS
PubMed
Google Scholar
Gredinger E, Gerber AN, Tamir Y, Tapscott SJ, Bengal E: Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. J Biol Chem. 1998, 273: 10436-10444. 10.1074/jbc.273.17.10436.
CAS
PubMed
Google Scholar
Sternberg EA, Spizz G, Perry ME, Olson EN: A ras-dependent pathway abolishes activity of a muscle-specific enhancer upstream from the muscle creatine kinase gene. Mol Cell Biol. 1989, 9: 594-601.
PubMed Central
CAS
PubMed
Google Scholar
Olwin BB, Hauschka SD: Cell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in culture. J Cell Biol. 1988, 107: 761-769. 10.1083/jcb.107.2.761.
CAS
PubMed
Google Scholar
Templeton TJ, Hauschka SD: FGF-mediated aspects of skeletal muscle growth and differentiation are controlled by a high affinity receptor, FGFR1. Dev Biol. 1992, 154: 169-181. 10.1016/0012-1606(92)90057-N.
CAS
PubMed
Google Scholar
Hamilton DL, Philp A, MacKenzie MG, Baar K: Prolonged activation of S6K1 does not suppress IRS or PI-3 kinase signaling during muscle cell differentiation. BMC Cell Biol. 2010, 11: 37-10.1186/1471-2121-11-37.
PubMed Central
PubMed
Google Scholar
Sarbassov DD, Peterson CA: Insulin receptor substrate-1 and phosphatidylinositol 3-kinase regulate extracellular signal-regulated kinase-dependent and -independent signaling pathways during myogenic differentiation. Mol Endocrinol. 1998, 12: 1870-1878. 10.1210/me.12.12.1870.
CAS
PubMed
Google Scholar
Ostrovsky O, Bengal E: The mitogen-activated protein kinase cascade promotes myoblast cell survival by stabilizing the cyclin-dependent kinase inhibitor, p21WAF1 protein. J Biol Chem. 2003, 278: 21221-21231. 10.1074/jbc.M211357200.
CAS
PubMed
Google Scholar
Cho YY, Yao K, Bode AM, Bergen HR, Madden BJ, Oh SM, Ermakova S, Kang BS, Choi HS, Shim JH, Dong Z: RSK2 mediates muscle cell differentiation through regulation of NFAT3. J Biol Chem. 2007, 282: 8380-8392. 10.1074/jbc.M611322200.
PubMed Central
CAS
PubMed
Google Scholar
Han J, Lee JD, Bibbs L, Ulevitch RJ: A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994, 265: 808-811. 10.1126/science.7914033.
CAS
PubMed
Google Scholar
Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J, Saklatvala J: Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell. 1994, 78: 1039-1049. 10.1016/0092-8674(94)90278-X.
CAS
PubMed
Google Scholar
Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR: A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell. 1994, 78: 1027-1037. 10.1016/0092-8674(94)90277-1.
CAS
PubMed
Google Scholar
Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW: A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994, 372: 739-746. 10.1038/372739a0.
CAS
PubMed
Google Scholar
Nagata Y, Takahashi N, Davis RJ, Todokoro K: Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. Blood. 1998, 92: 1859-1869.
CAS
PubMed
Google Scholar
Morooka T, Nishida E: Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J Biol Chem. 1998, 273: 24285-24288. 10.1074/jbc.273.38.24285.
CAS
PubMed
Google Scholar
Engelman JA, Lisanti MP, Scherer PE: Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. J Biol Chem. 1998, 273: 32111-32120. 10.1074/jbc.273.48.32111.
CAS
PubMed
Google Scholar
Hu Y, Chan E, Wang SX, Li B: Activation of p38 mitogen-activated protein kinase is required for osteoblast differentiation. Endocrinology. 2003, 144: 2068-2074. 10.1210/en.2002-220863.
CAS
PubMed
Google Scholar
Stanton LA, Sabari S, Sampaio AV, Underhill TM, Beier F: p38 MAP kinase signalling is required for hypertrophic chondrocyte differentiation. Biochem J. 2004, 378: 53-62. 10.1042/BJ20030874.
PubMed Central
CAS
PubMed
Google Scholar
Bhat NR, Zhang P, Mohanty SB: p38 MAP kinase regulation of oligodendrocyte differentiation with CREB as a potential target. Neurochem Res. 2007, 32: 293-302. 10.1007/s11064-006-9274-9.
CAS
PubMed
Google Scholar
Cuenda A, Cohen P: Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J Biol Chem. 1999, 274: 4341-4346. 10.1074/jbc.274.7.4341.
CAS
PubMed
Google Scholar
Zetser A, Gredinger E, Bengal E: p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation: participation of the Mef2c transcription factor. J Biol Chem. 1999, 274: 5193-5200. 10.1074/jbc.274.8.5193.
CAS
PubMed
Google Scholar
Galbiati F, Volonte D, Engelman JA, Scherer PE, Lisanti MP: Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts: transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J Biol Chem. 1999, 274: 30315-30321. 10.1074/jbc.274.42.30315.
CAS
PubMed
Google Scholar
Li Y, Jiang B, Ensign WY, Vogt PK, Han J: Myogenic differentiation requires signalling through both phosphatidylinositol 3-kinase and p38 MAP kinase. Cell Signal. 2000, 12: 751-757. 10.1016/S0898-6568(00)00120-0.
CAS
PubMed
Google Scholar
de Angelis L, Zhao J, Andreucci JJ, Olson EN, Cossu G, McDermott JC: Regulation of vertebrate myotome development by the p38 MAP kinase-MEF2 signaling pathway. Dev Biol. 2005, 283: 171-179. 10.1016/j.ydbio.2005.04.009.
CAS
PubMed
Google Scholar
Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P, Baeza-Raja B, Jardí M, Bosch-Comas A, Esteller M, Caelles C, Serrano AL, Wagner EF, Muñoz-Cánoves P: Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38α in abrogating myoblast proliferation. EMBO J. 2007, 26: 1245-1256. 10.1038/sj.emboj.7601587.
PubMed Central
CAS
PubMed
Google Scholar
Perdiguero E, Ruiz-Bonilla V, Serrano AL, Muñoz-Cánoves P: Genetic deficiency of p38α reveals its critical role in myoblast cell cycle exit: the p38α-JNK connection. Cell Cycle. 2007, 6: 1298-1303. 10.4161/cc.6.11.4315.
CAS
PubMed
Google Scholar
Ruiz-Bonilla V, Perdiguero E, Gresh L, Serrano AL, Zamora M, Sousa-Victor P, Jardí M, Wagner EF, Muñoz-Cánoves P: Efficient adult skeletal muscle regeneration in mice deficient in p38α, p38γ and p38δ MAP kinases. Cell Cycle. 2008, 7: 2208-2214. 10.4161/cc.7.14.6273.
CAS
PubMed
Google Scholar
Lechner C, Zahalka MA, Giot JF, Møller NP, Ullrich A: ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci USA. 1996, 93: 4355-4359. 10.1073/pnas.93.9.4355.
PubMed Central
CAS
PubMed
Google Scholar
Wang H, Xu Q, Xiao F, Jiang Y, Wu Z: Involvement of the p38 mitogen-activated protein kinase α, β, and γ isoforms in myogenic differentiation. Mol Biol Cell. 2008, 19: 1519-1528. 10.1091/mbc.E07-08-0817.
PubMed Central
CAS
PubMed
Google Scholar
Takaesu G, Kang JS, Bae GU, Yi MJ, Lee CM, Reddy EP, Krauss RS: Activation of p38α/β MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein Cdo. J Cell Biol. 2006, 175: 383-388. 10.1083/jcb.200608031.
PubMed Central
CAS
PubMed
Google Scholar
Kang JS, Bae GU, Yi MJ, Yang YJ, Oh JE, Takaesu G, Zhou YT, Low BC, Krauss RS: A Cdo-Bnip-2-Cdc42 signaling pathway regulates p38α/β MAPK activity and myogenic differentiation. J Cell Biol. 2008, 182: 497-507. 10.1083/jcb.200801119.
PubMed Central
CAS
PubMed
Google Scholar
Lu M, Krauss RS: N-cadherin ligation, but not Sonic hedgehog binding, initiates Cdo-dependent p38α/β MAPK signaling in skeletal myoblasts. Proc Natl Acad Sci USA. 2010, 107: 4212-4217. 10.1073/pnas.0908883107.
PubMed Central
CAS
PubMed
Google Scholar
Bhatnagar S, Kumar A, Makonchuk DY, Li H, Kumar A: Transforming growth factor-β-activated kinase 1 is an essential regulator of myogenic differentiation. J Biol Chem. 2010, 285: 6401-6411. 10.1074/jbc.M109.064063.
PubMed Central
CAS
PubMed
Google Scholar
Puri PL, Wu Z, Zhang P, Wood LD, Bhakta KS, Han J, Feramisco JR, Karin M, Wang JY: Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev. 2000, 14: 574-584.
PubMed Central
CAS
PubMed
Google Scholar
Serra C, Palacios D, Mozzetta C, Forcales SV, Morantte I, Ripani M, Jones DR, Du K, Jhala US, Simone C, Puri PL: Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell. 2007, 28: 200-213. 10.1016/j.molcel.2007.08.021.
CAS
PubMed
Google Scholar
Palacios D, Mozzetta C, Consalvi S, Caretti G, Saccone V, Proserpio V, Marquez VE, Valente S, Mai A, Forcales SV, Sartorelli V, Puri PL: TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell. 2010, 7: 455-469. 10.1016/j.stem.2010.08.013.
PubMed Central
CAS
PubMed
Google Scholar
Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL: p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet. 2004, 36: 738-743. 10.1038/ng1378.
CAS
PubMed
Google Scholar
Rampalli S, Li L, Mak E, Ge K, Brand M, Tapscott SJ, Dilworth FJ: p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. Nat Struct Mol Biol. 2007, 14: 1150-1156. 10.1038/nsmb1316.
PubMed Central
CAS
PubMed
Google Scholar
Lluís F, Ballestar E, Suelves M, Esteller M, Muñoz-Cánoves P: E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. EMBO J. 2005, 24: 974-984. 10.1038/sj.emboj.7600528.
PubMed Central
PubMed
Google Scholar
Baeza-Raja B, Muñoz-Cánoves P: p38 MAPK-induced nuclear factor-κΒ activity is required for skeletal muscle differentiation: role of interleukin-6. Mol Biol Cell. 2004, 15: 2013-2026. 10.1091/mbc.E03-08-0585.
PubMed Central
CAS
PubMed
Google Scholar
Gonzalez I, Tripathi G, Carter EJ, Cobb LJ, Salih DAM, Lovett FA, Holding C, Pell JM: Akt2, a novel functional link between p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in myogenesis. Mol Cell Biol. 2004, 24: 3607-3622. 10.1128/MCB.24.9.3607-3622.2004.
PubMed Central
CAS
PubMed
Google Scholar
Cabane C, Coldefy AS, Yeow K, Dérijard B: The p38 pathway regulates Akt both at the protein and transcriptional activation levels during myogenesis. Cell Signal. 2004, 16: 1405-1415. 10.1016/j.cellsig.2004.05.003.
CAS
PubMed
Google Scholar
Lovett FA, Cosgrove RA, Gonzalez I, Pell JM: Essential role for p38α MAPK but not p38γ MAPK in Igf2 expression and myoblast differentiation. Endocrinology. 2010, 151: 4368-4380. 10.1210/en.2010-0209.
CAS
PubMed
Google Scholar
Briata P, Forcales SV, Ponassi M, Corte G, Chen CY, Karin M, Puri PL, Gherzi R: p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol Cell. 2005, 20: 891-903. 10.1016/j.molcel.2005.10.021.
CAS
PubMed
Google Scholar
Weston AD, Sampaio AV, Ridgeway AG, Underhill TM: Inhibition of p38 MAPK signaling promotes late stages of myogenesis. J Cell Sci. 2003, 116: 2885-2893. 10.1242/jcs.00525.
CAS
PubMed
Google Scholar
Staal SP: Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA. 1987, 84: 5034-5037. 10.1073/pnas.84.14.5034.
PubMed Central
CAS
PubMed
Google Scholar
Coffer PJ, Woodgett JR: Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem. 1991, 201: 475-481. 10.1111/j.1432-1033.1991.tb16305.x.
CAS
PubMed
Google Scholar
Bellacosa A, Testa JR, Staal SP, Tsichlis PN: A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science. 1991, 254: 274-277. 10.1126/science.1833819.
CAS
PubMed
Google Scholar
Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA: Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA. 1991, 88: 4171-4175. 10.1073/pnas.88.10.4171.
PubMed Central
CAS
PubMed
Google Scholar
Downward J: Signal transduction: a target for PI(3) kinase. Nature. 1995, 376: 553-554. 10.1038/376553a0.
CAS
PubMed
Google Scholar
Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K, Haga T, Kikkawa U: Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and βγ subunits of G proteins. Biochem Biophys Res Commun. 1995, 216: 526-534. 10.1006/bbrc.1995.2654.
CAS
PubMed
Google Scholar
Glass DJ: Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol. 2003, 5: 87-90. 10.1038/ncb0203-87.
CAS
PubMed
Google Scholar
Franke TF: PI3K/Akt: getting it right matters. Oncogene. 2008, 27: 6473-6488. 10.1038/onc.2008.313.
CAS
PubMed
Google Scholar
Dong LQ, Liu F: PDK2: the missing piece in the receptor tyrosine kinase signaling pathway puzzle. Am J Physiol Endocrinol Metab. 2005, 289: E187-E196. 10.1152/ajpendo.00011.2005.
CAS
PubMed
Google Scholar
Elia D, Madhala D, Ardon E, Reshef R, Halevy O: Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: involvement of MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta. 2007, 1773: 1438-1446. 10.1016/j.bbamcr.2007.06.006.
CAS
PubMed
Google Scholar
Bae GU, Lee JR, Kim BG, Han JW, Leem YE, Lee HJ, Ho SM, Hahn MJ, Kang JS: Cdo interacts with APPL1 and activates Akt in myoblast differentiation. Mol Biol Cell. 2010, 21: 2399-2411. 10.1091/mbc.E09-12-1011.
PubMed Central
CAS
PubMed
Google Scholar
Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, Fang Q, Christ-Roberts CY, Hong JY, Kim RY, Liu F, Dong LQ: APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006, 8: 516-523. 10.1038/ncb1404.
CAS
PubMed
Google Scholar
Saito T, Jones CC, Huang S, Czech MP, Pilch PF: The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation. J Biol Chem. 2007, 282: 32280-32287. 10.1074/jbc.M704150200.
CAS
PubMed
Google Scholar
Florini JR, Magri KA, Ewton DZ, James PL, Grindstaff K, Rotwein PS: "Spontaneous" differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II. J Biol Chem. 1991, 266: 15917-15923.
CAS
PubMed
Google Scholar
Stewart CE, Rotwein P: Insulin-like growth factor-II is an autocrine survival factor for differentiating myoblasts. J Biol Chem. 1996, 271: 11330-11338. 10.1074/jbc.271.19.11330.
CAS
PubMed
Google Scholar
Stewart CE, James PL, Fant ME, Rotwein P: Overexpression of insulin-like growth factor-II induces accelerated myoblast differentiation. J Cell Physiol. 1996, 169: 23-32. 10.1002/(SICI)1097-4652(199610)169:1<23::AID-JCP3>3.0.CO;2-G.
CAS
PubMed
Google Scholar
Musarò A, Rosenthal N: Maturation of the myogenic program is induced by postmitotic expression of insulin-like growth factor I. Mol Cell Biol. 1999, 19: 3115-3124.
PubMed Central
PubMed
Google Scholar
Semsarian C, Sutrave P, Richmond DR, Graham RM: Insulin-like growth factor (IGF-I) induces myotube hypertrophy associated with an increase in anaerobic glycolysis in a clonal skeletal-muscle cell model. Biochem J. 1999, 339: 443-451. 10.1042/0264-6021:3390443.
PubMed Central
CAS
PubMed
Google Scholar
Musarò A, McCullagh KJ, Naya FJ, Olson EN, Rosenthal N: IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature. 1999, 400: 581-585. 10.1038/23060.
PubMed
Google Scholar
Tureckova J, Wilson EM, Cappalonga JL, Rotwein P: Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin. J Biol Chem. 2001, 276: 39264-39270. 10.1074/jbc.M104991200.
CAS
PubMed
Google Scholar
Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ: Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem. 1995, 270: 12109-12116. 10.1074/jbc.270.20.12109.
CAS
PubMed
Google Scholar
Barton-Davis ER, Shoturma DI, Musarò A, Rosenthal N, Sweeney HL: Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA. 1998, 95: 15603-15607. 10.1073/pnas.95.26.15603.
PubMed Central
CAS
PubMed
Google Scholar
Musarò A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N: Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. 2001, 27: 195-200. 10.1038/84839.
PubMed
Google Scholar
Fujio Y, Guo K, Mano T, Mitsuuchi Y, Testa JR, Walsh K: Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol Cell Biol. 1999, 19: 5073-5082.
PubMed Central
CAS
PubMed
Google Scholar
Tamir Y, Bengal E: Phosphoinositide 3-kinase induces the transcriptional activity of MEF2 proteins during muscle differentiation. J Biol Chem. 2000, 275: 34424-34432.
CAS
PubMed
Google Scholar
Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD: Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001, 3: 1014-1019. 10.1038/ncb1101-1014.
CAS
PubMed
Google Scholar
Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S: A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci USA. 2002, 99: 9213-9218. 10.1073/pnas.142166599.
PubMed Central
CAS
PubMed
Google Scholar
Lai KMV, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, Economides AN, Yancopoulos GD, Glass DJ: Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol. 2004, 24: 9295-9304. 10.1128/MCB.24.21.9295-9304.2004.
PubMed Central
CAS
PubMed
Google Scholar
Vandromme M, Rochat A, Meier R, Carnac G, Besser D, Hemmings BA, Fernandez A, Lamb NJ: Protein kinase Bβ/Akt2 plays a specific role in muscle differentiation. J Biol Chem. 2001, 276: 8173-8179. 10.1074/jbc.M005587200.
CAS
PubMed
Google Scholar
Héron-Milhavet L, Franckhauser C, Rana V, Berthenet C, Fisher D, Hemmings BA, Fernandez A, Lamb NJC: Only Akt1 is required for proliferation, while Akt2 promotes cell cycle exit through p21 binding. Mol Cell Biol. 2006, 26: 8267-8280. 10.1128/MCB.00201-06.
PubMed Central
PubMed
Google Scholar
Altomare DA, Guo K, Cheng JQ, Sonoda G, Walsh K, Testa JR: Cloning, chromosomal localization and expression analysis of the mouse Akt2 oncogene. Oncogene. 1995, 11: 1055-1060.
CAS
PubMed
Google Scholar
Altomare DA, Lyons GE, Mitsuuchi Y, Cheng JQ, Testa JR: Akt2 mRNA is highly expressed in embryonic brown fat and the AKT2 kinase is activated by insulin. Oncogene. 1998, 16: 2407-2411. 10.1038/sj.onc.1201750.
CAS
PubMed
Google Scholar
Calera MR, Pilch PF: Induction of Akt-2 correlates with differentiation in Sol8 muscle cells. Biochem Biophys Res Commun. 1998, 251: 835-841. 10.1006/bbrc.1998.9566.
CAS
PubMed
Google Scholar
Kaneko S, Feldman RI, Yu L, Wu Z, Gritsko T, Shelley SA, Nicosia SV, Nobori T, Cheng JQ: Positive feedback regulation between Akt2 and MyoD during muscle differentiation: cloning of Akt2 promoter. J Biol Chem. 2002, 277: 23230-23235. 10.1074/jbc.M201733200.
CAS
PubMed
Google Scholar
Rochat A, Fernandez A, Vandromme M, Molès JP, Bouschet T, Carnac G, Lamb NJC: Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell. 2004, 15: 4544-4555. 10.1091/mbc.E03-11-0816.
PubMed Central
CAS
PubMed
Google Scholar
Héron-Milhavet L, Mamaeva D, Rochat A, Lamb NJC, Fernandez A: Akt2 is implicated in skeletal muscle differentiation and specifically binds Prohibitin2/REA. J Cell Physiol. 2008, 214: 158-165. 10.1002/jcp.21177.
PubMed
Google Scholar
Sumitani S, Goya K, Testa JR, Kouhara H, Kasayama S: Akt1 and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts. Endocrinology. 2002, 143: 820-828. 10.1210/en.143.3.820.
CAS
PubMed
Google Scholar
Rosenthal SM, Cheng ZQ: Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts. Proc Natl Acad Sci USA. 1995, 92: 10307-10311. 10.1073/pnas.92.22.10307.
PubMed Central
CAS
PubMed
Google Scholar
Engert JC, Berglund EB, Rosenthal N: Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol. 1996, 135: 431-440. 10.1083/jcb.135.2.431.
CAS
PubMed
Google Scholar
Machida S, Spangenburg EE, Booth FW: Forkhead transcription factor FoxO1 transduces insulin-like growth factor's signal to p27Kip1 in primary skeletal muscle satellite cells. J Cell Physiol. 2003, 196: 523-531. 10.1002/jcp.10339.
CAS
PubMed
Google Scholar
Viñals F, Pouysségur J: Confluence of vascular endothelial cells induces cell cycle exit by inhibiting p42/p44 mitogen-activated protein kinase activity. Mol Cell Biol. 1999, 19: 2763-2772.
PubMed Central
PubMed
Google Scholar
Suzuki E, Nagata D, Yoshizumi M, Kakoki M, Goto A, Omata M, Hirata Y: Reentry into the cell cycle of contact-inhibited vascular endothelial cells by a phosphatase inhibitor: possible involvement of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J Biol Chem. 2000, 275: 3637-3644. 10.1074/jbc.275.5.3637.
CAS
PubMed
Google Scholar
Jacobsen K, Groth A, Willumsen BM: Ras-inducible immortalized fibroblasts: focus formation without cell cycle deregulation. Oncogene. 2002, 21: 3058-3067. 10.1038/sj.onc.1205423.
CAS
PubMed
Google Scholar
Zhang L, Bewick M, Lafrenie RM: Role of Raf-1 and FAK in cell density-dependent regulation of integrin-dependent activation of MAP kinase. Carcinogenesis. 2002, 23: 1251-1258. 10.1093/carcin/23.7.1251.
CAS
PubMed
Google Scholar
Gherzi R, Trabucchi M, Ponassi M, Gallouzi IE, Rosenfeld MG, Briata P: Akt2-mediated phosphorylation of Pitx2 controls Ccnd1 mRNA decay during muscle cell differentiation. Cell Death Differ. 2010, 17: 975-983. 10.1038/cdd.2009.194.
CAS
PubMed
Google Scholar
Hribal ML, Nakae J, Kitamura T, Shutter JR, Accili D: Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol. 2003, 162: 535-541. 10.1083/jcb.200212107.
PubMed Central
CAS
PubMed
Google Scholar
Xu Q, Wu Z: The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J Biol Chem. 2000, 275: 36750-36757. 10.1074/jbc.M005030200.
CAS
PubMed
Google Scholar
Cabane C, Coldefy AS, Yeow K, Dérijard B: The p38 pathway regulates Akt both at the protein and transcriptional activation levels during myogenesis. Cell Signal. 2004, 16: 1405-1415. 10.1016/j.cellsig.2004.05.003.
CAS
PubMed
Google Scholar
van der Velden JLJ, Langen RCJ, Kelders MCJM, Wouters EFM, Janssen-Heininger YMW, Schols AMWJ: Inhibition of glycogen synthase kinase-3β activity is sufficient to stimulate myogenic differentiation. Am J Physiol Cell Physiol. 2006, 290: C453-C462.
CAS
PubMed
Google Scholar
van der Velden JLJ, Schols AMWJ, Willems J, Kelders MCJM, Langen RCJ: Glycogen synthase kinase 3 suppresses myogenic differentiation through negative regulation of NFATc3. J Biol Chem. 2008, 283: 358-366.
CAS
PubMed
Google Scholar
Pansters NAM, van der Velden JLJ, Kelders MCJM, Laeremans H, Schols AMWJ, Langen RCJ: Segregation of myoblast fusion and muscle-specific gene expression by distinct ligand-dependent inactivation of GSK-3β. Cell Mol Life Sci. 2011, 68: 523-535. 10.1007/s00018-010-0467-7.
PubMed Central
CAS
PubMed
Google Scholar
Wilson EM, Tureckova J, Rotwein P: Permissive roles of phosphatidyl inositol 3-kinase and Akt in skeletal myocyte maturation. Mol Biol Cell. 2004, 15: 497-505.
PubMed Central
CAS
PubMed
Google Scholar
Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ: Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol. 2001, 3: 1009-1013. 10.1038/ncb1101-1009.
CAS
PubMed
Google Scholar
Vyas DR, Spangenburg EE, Abraha TW, Childs TE, Booth FW: GSK-3β negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol. 2002, 283: C545-C551.
CAS
PubMed
Google Scholar
Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004, 117: 399-412. 10.1016/S0092-8674(04)00400-3.
PubMed Central
CAS
PubMed
Google Scholar
Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ: The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004, 14: 395-403. 10.1016/S1097-2765(04)00211-4.
CAS
PubMed
Google Scholar
Park IH, Erbay E, Nuzzi P, Chen J: Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1. Exp Cell Res. 2005, 309: 211-219. 10.1016/j.yexcr.2005.05.017.
CAS
PubMed
Google Scholar
Erbay E, Chen J: The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism. J Biol Chem. 2001, 276: 36079-36082. 10.1074/jbc.C100406200.
CAS
PubMed
Google Scholar
Shu L, Zhang X, Houghton PJ: Myogenic differentiation is dependent on both the kinase function and the N-terminal sequence of mammalian target of rapamycin. J Biol Chem. 2002, 277: 16726-16732. 10.1074/jbc.M112285200.
CAS
PubMed
Google Scholar
Erbay E, Park IH, Nuzzi PD, Schoenherr CJ, Chen J: IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients. J Cell Biol. 2003, 163: 931-936. 10.1083/jcb.200307158.
PubMed Central
CAS
PubMed
Google Scholar
Shu L, Houghton PJ: The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts. Mol Cell Biol. 2009, 29: 4691-4700. 10.1128/MCB.00764-09.
PubMed Central
CAS
PubMed
Google Scholar
Ge Y, Wu AL, Warnes C, Liu J, Zhang C, Kawasome H, Terada N, Boppart MD, Schoenherr CJ, Chen J: mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. Am J Physiol Cell Physiol. 2009, 297: C1434-C1444. 10.1152/ajpcell.00248.2009.
PubMed Central
CAS
PubMed
Google Scholar
Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ: Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem. 2005, 280: 2737-2744.
CAS
PubMed
Google Scholar
Ohanna M, Sobering AK, Lapointe T, Lorenzo L, Praud C, Petroulakis E, Sonenberg N, Kelly PA, Sotiropoulos A, Pende M: Atrophy of S6K1-/- skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol. 2005, 7: 286-294. 10.1038/ncb1231.
CAS
PubMed
Google Scholar
Sun Y, Ge Y, Drnevich J, Zhao Y, Band M, Chen J: Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J Cell Biol. 2010, 189: 1157-1169. 10.1083/jcb.200912093.
PubMed Central
CAS
PubMed
Google Scholar
Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM: Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol. 1995, 165: 307-312. 10.1002/jcp.1041650211.
CAS
PubMed
Google Scholar
Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE: HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol. 1998, 194: 114-128. 10.1006/dbio.1997.8803.
CAS
PubMed
Google Scholar
Miller KJ, Thaloor D, Matteson S, Pavlath GK: Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol. 2000, 278: C174-C181.
CAS
PubMed
Google Scholar
Sun L, Ma K, Wang H, Xiao F, Gao Y, Zhang W, Wang K, Gao X, Ip N, Wu Z: JAK1-STAT1-STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts. J Cell Biol. 2007, 179: 129-138. 10.1083/jcb.200703184.
PubMed Central
CAS
PubMed
Google Scholar
Gillespie MA, Le Grand F, Scimè A, Kuang S, von Maltzahn J, Seale V, Cuenda A, Ranish JA, Rudnicki MA: p38-γ-dependent gene silencing restricts entry into the myogenic differentiation program. J Cell Biol. 2009, 187: 991-1005. 10.1083/jcb.200907037.
PubMed Central
CAS
PubMed
Google Scholar
Nishiyama T, Kii I, Kudo A: Inactivation of Rho/ROCK signaling is crucial for the nuclear accumulation of FKHR and myoblast fusion. J Biol Chem. 2004, 279: 47311-47319. 10.1074/jbc.M403546200.
CAS
PubMed
Google Scholar
Castellani L, Salvati E, Alemà S, Falcone G: Fine regulation of RhoA and Rock is required for skeletal muscle differentiation. J Biol Chem. 2006, 281: 15249-15257. 10.1074/jbc.M601390200.
CAS
PubMed
Google Scholar
Lim MJ, Choi KJ, Ding Y, Kim JH, Kim BS, Kim YH, Lee J, Choe W, Kang I, Ha J, Yoon KS, Kim SS: RhoA/Rho kinase blocks muscle differentiation via serine phosphorylation of insulin receptor substrate-1 and -2. Mol Endocrinol. 2007, 21: 2282-2293. 10.1210/me.2007-0114.
CAS
PubMed
Google Scholar
Bae GU, Kim BG, Lee HJ, Oh JE, Lee SJ, Zhang W, Krauss RS, Kang JS: Cdo binds Abl to promote p38α/β mitogen-activated protein kinase activity and myogenic differentiation. Mol Cell Biol. 2009, 29: 4130-4143. 10.1128/MCB.00199-09.
PubMed Central
CAS
PubMed
Google Scholar
di Bari MG, Ciuffini L, Mingardi M, Testi R, Soddu S, Barilà D: c-Abl acetylation by histone acetyltransferases regulates its nuclear-cytoplasmic localization. EMBO Rep. 2006, 7: 727-733. 10.1038/sj.embor.7400700.
PubMed Central
PubMed
Google Scholar
Lu J, McKinsey TA, Zhang CL, Olson EN: Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell. 2000, 6: 233-244. 10.1016/S1097-2765(00)00025-3.
CAS
PubMed
Google Scholar
McKinsey TA, Zhang CL, Olson EN: Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA. 2000, 97: 14400-14405. 10.1073/pnas.260501497.
PubMed Central
CAS
PubMed
Google Scholar
McKinsey TA, Zhang CL, Lu J, Olson EN: Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000, 408: 106-111. 10.1038/35040593.
PubMed Central
CAS
PubMed
Google Scholar
Xu Q, Yu L, Liu L, Cheung CF, Li X, Yee SP, Yang XJ, Wu Z: p38 mitogen-activated protein kinase-, calcium-calmodulin-dependent protein kinase-, and calcineurin-mediated signaling pathways transcriptionally regulate myogenin expression. Mol Biol Cell. 2002, 13: 1940-1952. 10.1091/mbc.02-02-0016.
PubMed Central
CAS
PubMed
Google Scholar
Deng X, Ewton DZ, Pawlikowski B, Maimone M, Friedman E: Mirk/dyrk1B is a Rho-induced kinase active in skeletal muscle differentiation. J Biol Chem. 2003, 278: 41347-41354. 10.1074/jbc.M306780200.
CAS
PubMed
Google Scholar
Deng X, Ewton DZ, Mercer SE, Friedman E: Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation. J Biol Chem. 2005, 280: 4894-4905.
CAS
PubMed
Google Scholar
Dinev D, Jordan BW, Neufeld B, Lee JD, Lindemann D, Rapp UR, Ludwig S: Extracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells. EMBO Rep. 2001, 2: 829-834. 10.1093/embo-reports/kve177.
PubMed Central
CAS
PubMed
Google Scholar
Carter EJ, Cosgrove RA, Gonzalez I, Eisemann JH, Lovett FA, Cobb LJ, Pell JM: MEK5 and ERK5 are mediators of the pro-myogenic actions of IGF-2. J Cell Sci. 2009, 122: 3104-3112. 10.1242/jcs.045757.
PubMed Central
CAS
PubMed
Google Scholar
Wang K, Wang C, Xiao F, Wang H, Wu Z: JAK2/STAT2/STAT3 are required for myogenic differentiation. J Biol Chem. 2008, 283: 34029-34036. 10.1074/jbc.M803012200.
PubMed Central
CAS
PubMed
Google Scholar
Kleger A, Loebnitz C, Pusapati GV, Armacki M, Müller M, Tümpel S, Illing A, Hartmann D, Brunner C, Liebau S, Rudolph KL, Adler G, Seufferlein T: Protein kinase D2 is an essential regulator of murine myoblast differentiation. PLoS One. 2011, 6: e14599-10.1371/journal.pone.0014599.
PubMed Central
PubMed
Google Scholar
Bois PRJ, Brochard VF, Salin-Cantegrel AVA, Cleveland JL, Grosveld GC: FoxO1a-cyclic GMP-dependent kinase I interactions orchestrate myoblast fusion. Mol Cell Biol. 2005, 25: 7645-7656. 10.1128/MCB.25.17.7645-7656.2005.
PubMed Central
CAS
PubMed
Google Scholar
Madaro L, Marrocco V, Fiore P, Aulino P, Smeriglio P, Adamo S, Molinaro M, Bouché M: PKCθ signaling is required for myoblast fusion by regulating the expression of caveolin-3 and β1D integrin upstream focal adhesion kinase. Mol Biol Cell. 2011, 22: 1409-1419. 10.1091/mbc.E10-10-0821.
PubMed Central
CAS
PubMed
Google Scholar
Quach NL, Biressi S, Reichardt LF, Keller C, Rando TA: Focal adhesion kinase signaling regulates the expression of caveolin 3 and β1 integrin, genes essential for normal myoblast fusion. Mol Biol Cell. 2009, 20: 3422-3435. 10.1091/mbc.E09-02-0175.
PubMed Central
CAS
PubMed
Google Scholar
Pelosi M, Marampon F, Zani BM, Prudente S, Perlas E, Caputo V, Cianetti L, Berno V, Narumiya S, Kang SW, Musarò A, Rosenthal N: ROCK2 and its alternatively spliced isoform ROCK2m positively control the maturation of the myogenic program. Mol Cell Biol. 2007, 27: 6163-6176. 10.1128/MCB.01735-06.
PubMed Central
CAS
PubMed
Google Scholar